




Forewords

There used to be a time when video-game enthusiasts could only experience the very
best in places called ”arcades”.

In the early 90s, 16-bit home consoles such as the Super Nintendo, the Sega Genesis,
or the NEC PC Engine were ramping up in terms of horsepower. However, they were a
far cry from the hardware found in coin-operated ”Amusement Machines”.

Nicknamed ”coin-ops”, these cabinets ran video-games featuring multitudes of huge
sprites covering the whole screen, beautiful colors, digitized sounds, and engaging
high quality music. These machines were in a league of their own.

Accessing arcades was an adventure in itself. Quarters had to be gathered, means of
transportation acquired, and paper maps studied. Some carpooled while others used
their bikes. Lucky ones had ”amusement venues” dedicated to video-games in their
hometown while others found themselves in a dirty pub surrounded by adults who did
not seem to have much magic happening in their lives.

Amount of play-time was directly correlated to skill level. Coins were spent carefully,
after having studied other people’s techniques. The only certainty resulting from the
expedition was a day ending with empty pockets.

Despite all these obstacles, video-game connoisseurs found the attraction irresistible.
Players of all ages and origins gravitated to the same places in order to follow their
passion.

Rows of lined up cabinets created a highly competitive environment where publishers
only had a few seconds to catch a player’s attention and, most importantly, their quar-
ters. It was during this time that a young company named Capcom managed to elevate
itself above the competition, seemingly producing one masterpiece after another, and
turn itself into an icon.

3



The history of Capcom and the genesis of Street Fighter II, Ghouls ’n Ghosts, and Final
Fight belongs in history books. Unfortunately when I started researching the topic, I
found little to satisfy my curiosity and next to nothing about the engineering side of
things.

The fierce rivalry between publishers warranted extreme secrecy. Artists, program-
mers, and designers were only credited with their nicknames in order to avoid poach-
ing. As for the hardware powering Capcom’s titles, nothing ever officially transpired
except for a code name, CP-System.

This book attempts to shed some light over the mystery platform. It is an engineering
love letter to the machine that enabled Capcom’s tremendous success.

- Fabien Sanglard
Version 1 (September, 2022)

4



Contents

1 Introduction 13

1.1 Costly Production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.2 Plagued by piracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.3 Capcom NT (New Technology) . . . . . . . . . . . . . . . . . . . . . . . . 23

1.4 Ode to CP-System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2 Hardware 31

2.1 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2 JAMMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3 Physical Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3.1 Board A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3.2 Board B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.3.3 Board C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.3.4 PALs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.4 Logical Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.5 Control system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.5.1 Motorola 68000 CPU . . . . . . . . . . . . . . . . . . . . . . . . . 45

5



CONTENTS CONTENTS

2.5.2 Motorola 68000 ”work” RAM . . . . . . . . . . . . . . . . . . . . . 47

2.5.3 Motorola 68000 Program ROM . . . . . . . . . . . . . . . . . . . 49

2.5.4 68000 Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.5.5 Putting it all together . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.6 Audio system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.6.1 z80 CPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.6.2 z80 Work RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.6.3 z80 ROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.6.4 z80 Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.6.5 YM2151 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.6.6 YM3012 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.6.7 MSM6295 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.6.8 PCM 101 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.6.9 ADPCM compression . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.7 Video system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.7.1 CRT 101 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.7.2 Syncing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.7.3 Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

2.7.4 Making choices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

2.7.5 Color Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

2.7.6 Putting it all together . . . . . . . . . . . . . . . . . . . . . . . . . 75

2.7.7 Color generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

2.8 Graphic system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

2.8.1 CPS-A and CPS-B: The ASICs powerhouse . . . . . . . . . . . . . 80

6



CONTENTS CONTENTS

2.8.2 Pens and Inks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

2.8.3 Elements of drawing . . . . . . . . . . . . . . . . . . . . . . . . . 80

2.8.4 Drawing background . . . . . . . . . . . . . . . . . . . . . . . . . 81

2.8.5 CPS1 Tilemaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

2.8.6 Drawing Sprites . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

2.8.7 OBJ Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

2.8.8 Putting it all together . . . . . . . . . . . . . . . . . . . . . . . . . 110

2.9 Copy protection system . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

2.9.1 The ever changing CPS-B . . . . . . . . . . . . . . . . . . . . . . . 116

2.9.2 ID check . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

2.9.3 Multiplication check . . . . . . . . . . . . . . . . . . . . . . . . . . 117

2.9.4 Moving registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

2.9.5 Unexpected behavior detection . . . . . . . . . . . . . . . . . . . 118

2.9.6 Invalid offset detection . . . . . . . . . . . . . . . . . . . . . . . . 118

2.9.7 Configuration Key . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

2.10 Epilogue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

2.10.1 CPS-1.5 Kabuki . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

2.10.2 CPS-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

3 Software concepts 123

3.1 CCPS: The CPS-1 Build System . . . . . . . . . . . . . . . . . . . . . . . . 124

3.2 Programming Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

3.3 CPUs Bootstrapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

3.4 Systems communication . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7



CONTENTS CONTENTS

3.4.1 m68k → CPSA and m68k → CPS-B . . . . . . . . . . . . . . . . . 127

3.4.2 z80 → YM2151 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

3.4.3 z80 → MSM6295 . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

3.4.4 m68k → z80 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

3.4.5 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

3.4.6 Back in the days . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

3.4.7 Our sound driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

3.5 Tracking wall-time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

3.6 Randomness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

3.7 Banking system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

4 GFX System 133

4.1 Tile format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

4.2 GFX Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

4.3 Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

4.4 Back in the days . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

4.4.1 Pen and Papers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

4.4.2 Non-square grid paper . . . . . . . . . . . . . . . . . . . . . . . . 137

4.4.3 OBJ allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

4.4.4 The sheet system . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

4.4.5 Digitizing art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

4.4.6 Tiny Character Editor . . . . . . . . . . . . . . . . . . . . . . . . . 146

4.4.7 Dotting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

4.4.8 Saving tiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

8



CONTENTS CONTENTS

4.4.9 Team structure and Culture . . . . . . . . . . . . . . . . . . . . . . 152

4.4.10 Inspiration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

4.5 Shapes and Sprites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

4.5.1 Sprite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

4.5.2 Shape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

5 Sound System 159

5.1 Processing Sound Samples . . . . . . . . . . . . . . . . . . . . . . . . . . 161

5.1.1 Constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

5.1.2 ADPCM Compression . . . . . . . . . . . . . . . . . . . . . . . . . 161

5.2 Structure of the OKI ROM . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

5.3 Processing Music . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

5.4 Programming the z80 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

5.4.1 Bootstrapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

5.4.2 z80 interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

5.4.3 Initializing variables . . . . . . . . . . . . . . . . . . . . . . . . . . 169

5.4.4 z80 Sound Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

5.5 Back in the days . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

5.5.1 Recruiting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

5.5.2 Creative process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

5.5.3 Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

6 Control System 181

6.1 Bootstrapping the 68000 . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

6.2 Auto-Interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

9



CONTENTS CONTENTS

6.3 Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

6.3.1 Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

6.3.2 Memory Regions . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

6.3.3 Code to segment . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

6.4 Initializing variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

6.5 Verifying RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

6.6 Ruling them all . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

6.6.1 Commanding sound . . . . . . . . . . . . . . . . . . . . . . . . . . 190

6.6.2 Main . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

6.6.3 Retrieving inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

6.6.4 Drawing on screen . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

6.7 Back in the days . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

6.7.1 SHARP X68000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

6.7.2 X68000 Tech specs . . . . . . . . . . . . . . . . . . . . . . . . . . 202

6.7.3 Video prowess . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

6.7.4 OS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

6.7.5 A Development machine? . . . . . . . . . . . . . . . . . . . . . . . 205

6.7.6 Ports Analysis: Ghouls ’n Ghosts (1994) . . . . . . . . . . . . . . 208

6.7.7 Ports Analysis: Final Fight (1992) . . . . . . . . . . . . . . . . . . 210

6.7.8 Per scene renderer . . . . . . . . . . . . . . . . . . . . . . . . . . 212

6.7.9 Ports Analysis: Street Fighter II Champion Edition (1993) . . . . . 214

6.7.10 Per level renderer . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

6.7.11 Saving further 68000 cycles . . . . . . . . . . . . . . . . . . . . . 217

6.7.12 The Rise ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

10



CONTENTS CONTENTS

6.7.13 ... and Fall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

7 People 221

8 Epilogue 223

9 Appendix 225

9.1 Making of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

Notes & References 227

11





Acknowledgments

Thanks to Victoria Ho for proof-reading this book and avoiding a grammatical carnage.

Thanks to Loı̈c Petit for generously sharing his expert knowledge of the CPS-1 and the
CPS-2. The section about the CPS-A and CPS-B graphic ASICs would not have been
possible without the extensive documentation he produced. He also volunteered to
proof-read the multiple drafts of this book and suggested many important improve-
ments. His contribution was invaluable.

The other giant upon whose shoulders this book stands is Upsilandre. He spent a
considerable amount of time explaining Pixel Aspect Ratio and spotted many mistakes
during proofreading. He conducted and shared the result of many researches not only
on the CPS-1 but also on the X68000. The articles and methodology to explore Capcom
ports he shared on gamopat-forum.com were particularly insightful.

Thanks to Charles MacDonald for sharing his knowledge of the CPS-1 and for patiently
explaining and re-explaining the art of tile map circuitry.

Thanks to Ben Torkington for making available ”SF2:Platinium”, his ANSI C re-write of
”Street Fighter II: World Warriors”.

Thanks to STG for his translation of Japanese articles on shmuplations.com.

Thanks to VGDensetsu for his numerous articles about the Street Fighter series and
Japanese game development in general.

Thanks to mvs-scans.com for their high-quality photos of the CPS-1 boards.

Thanks for John McMaster for his high-res scans of the CPS-A ASIC.

Thanks to the M.A.M.E contributors for the extensive documentation work they pro-
duced over all these years. You guys are the unsung heros of arcade history.

13

https://www.gamopat-forum.com
https://shmuplations.com


CONTENTS CONTENTS

Thanks to Mike Stedman for shedding light on some of the X68000 most obscure
features and ports.

14



Reporting issues

This book strives for accuracy. If you find mistakes, omissions, or typos, please take
the time to report these issues.

Or even better, patch the book with a pull request since the full source code is available
online on github.

Report an issue: https://github.com/fabiensanglard/cpsb/issues.

Send a pull request: https://github.com/fabiensanglard/cpsb/pulls.

Send me an email: fabiensanglard.net@gmail.com.

15

https://github.com/fabiensanglard/cpsb/issues
https://github.com/fabiensanglard/cpsb/pulls
mailto:fabiensanglard.net@gmail.com




Capacity Cheat Sheet

It is dangerous to go alone. Many chips are studied in the hardware chapter. Counting
the pins and inferring capacity can easily lead to ”off-by-one” errors.

Take this.

Capacity

Pins KiA Addresses
1 - 2

2 - 4

3 - 8

4 - 16

5 - 32

6 - 64

7 - 128

8 - 256

9 - 512

10 1 1,024

11 2 2,048

12 4 4,096

13 8 8,192

14 16 16,384

15 32 32,768

16 64 65,536

Capacity

Pins KiA Addresses
17 128 131,072

18 256 262,144

19 512 524,288

20 1,024 1,048,576

21 2,048 2,097,152

22 4,096 4,194,304

23 8,192 8,388,608

24 16,384 16,777,216

25 32,768 33,554,432

26 65,536 67,108,864

27 131,072 134,217,728

28 262,144 268,435,456

29 524,288 536,870,912

30 1,048,576 1,073,741,824

31 2,097,152 2,147,483,648

32 4,194,304 4,294,967,296

Pins capacity truth table.

17





Introduction

The origin of Capcom can be traced back to the founding of two companies by Kenzo
Tsujimoto: I.R.M. Corporation in 1979 and its subsidiary Japan Capsule Computers Co
in 1981. Located in Osaka prefecture, the two companies manufactured and distributed
electrical games.

After a merger in 1981 the resulting entity, Sanbi, was rebranded ”Capcom” in 1983.
The first medal cabinet [1], released the same year, was a baseball title named ”Little
League”.

The nickname of their products, ”Capsule Computers”, summarized the values of the
company. Intending to extend beyond the trendy personal computers of the era, the
”coin-ops” were sold as ”capsules packed to the brim with gaming fun”. The hard outer
shell embodied the desire to protect intellectual property and prevent illegal copies
which were inferior imitations.

In 1984, Capcom entered the world of video-games with their first title ”Vulgus”. Ar-
cades were a competitive world where cabinets had only a few seconds to catch the
eyes of a customer. It was especially difficult for a company which, at the time, did not
have the best technology.

I always considered Capcom as someone fighting with a bamboo stick. We
didn’t have the resources to equal Sega’s or Namco’ s hardware.

While they were racing in F1 cars, we were driving Hondas.

— Noritaka Funamizu (a.k.a ”Poo”), Capcom Game Planner [2]

19



CHAPTER 1. INTRODUCTION

1943: The Battle of Midway by Capcom (1987)

20



CHAPTER 1. INTRODUCTION

The metaphor appears justified when comparing two titles from 1987 side by side:
Capcom’s ”1943” (which Poo directed) and Sega’s ”Afterburner”.

Sega’s platform named ”X Board”, was in a league of its own. Its core ran on a dual
12.5 MHz Motorola 68000 CPUs. The graphic processor, Sega Super Scaler chipset
clocked at 50MHz, was capable of both scaling and rotating up to 256 sprites over
two background layers, and one ”road” layer.

Its sound system, ran by a 4MHz z80, sported a SegaPCM 16-channel stereo chip ca-
pable of rendering digitized sound effects far surpassing what could be achieved with
the prevalent FM synthesis.

In the opposing corner, Capcom’s valiant board featured a 6Mhz z80 CPU with a graphic
system capable of animating 32 sprites on top of one text layer and two background
layers [3].

The sound system, piloted via a second z80 running at 3Mhz, generated both music
and sound effects via Yamaha FM synthesis.

Afterburner by SEGA (1987)

21



CHAPTER 1. INTRODUCTION

Despite its simple graphics, 1943 sold honorably. It even managed to become the sec-
ond highest-grossing table arcade game of 1987 thanks to its engaging gameplay.

The dawn of Capcom history saw more titles doing well despite their limited technol-
ogy. In 1985, ”Wolf of the BattleField” (a.k.a Commando) conquered the world and
particularly the UK where test locations resulted in orders totaling a thousand units [4].

Commando (1985)
22



CHAPTER 1. INTRODUCTION

USA distributor, Data East, prominently advertised the profitability!
23



CHAPTER 1. INTRODUCTION

Released in 1984, Ghost’n Goblins is another video-game which is emblematic of Cap-
com’s capacity to do more with less in its early days.

With the same ”bamboo-stick” technology used in Commando, and the same planner
(Tokuro Fujiwara) directing a small team made of programmer Toshio Arima, artist
Masayoshi Kurokawa, and composer Ayako Mori, Ghost’n Goblins was another hit.

In this medieval fantasy inspired title, the hero is to rescue an abducted lover. Arthur
had to face hordes of Zombies, Magicians, Skeletons, Red Arremers, Flying Knights,
and the most unforgiving control system known to mankind.

The story was well put together. Bosses such as Unicorns, Dragons, Satan, and the
chief Astaroth were well-animated. Despite its nightmare inducing difficulty, players
liked the game.

Ghost’n Goblins (1984)

24



CHAPTER 1. INTRODUCTION

It became the 10th highest-grossing arcade game in Japan and reached 9th in the US.

Ghost’n Goblins flyer (1984)
25



CHAPTER 1. INTRODUCTION

What Capcom lacked in raw power, they made up with imagination and tinkering. But
wit was not always enough. In 1987, Capcom published ”Street Fighter”, an audaciously
innovative title but a commercial failure.

In ”Street Fighter”, players controlled their characters with a standard joystick but used
two large pneumatic pushers for kicks and punches. Pipes conducted air to the board
where pressure was measured. The harder a player punched the button, the higher the
damage inflicted.

Without tactile feedback, players tended to smash as hard as possible, forgetting to
manage their effort. After a few rounds the right arm was shot and fatigue made
rounds not fun. Besides enjoyment, there were also the issues of injuries and tendini-
tis. To rectify, Capcom retrofitted the control system with something more ”standard”
while still allowing players to select the power via six ”normal” buttons.

The game became playable but doomed by unimpressive graphics and sluggish con-
trols. The cabinet was largely ignored and despite attempts to boost sales with dis-
counts, ”the most amazing dedicated upright ever” soon fell into oblivion.

Street Fighter 1 (1987)

26



CHAPTER 1. INTRODUCTION

Street Fighter 1 cabinet flyer

27



1.1. COSTLY PRODUCTION CHAPTER 1. INTRODUCTION

1.1 Costly Production

Besides facing technologically superior competitors, Capcom had to deal with a con-
stantly evolving production pipeline. Looking at the Printed Circuit Boards (PCBs) host-
ing their games from 1984 to 1988 reveals a high variation of components.

Summarizing Capcom’s usage of the Motorola 6809, Zilog z80, Motorola m68k, Intel
8751 (MCU), YM2203, YM2151, YM2149, and MSM5205 in a table shows that even titles
produced the same year wouldn’t necessarily feature the same chips.

Even the ubiquitous z80 was used inconsistently since it could be dedicated to game
logic, audio, or both like in the ”1942” board which features two of them.

CPU SOUNDS

Game Name Year M6809 z80 m68k i8751 2203 2151 2149 5205
Vulgus 1984 X X
Higemaru 1984 X X
1942 1984 X X
Commando 1985 X X X
Ghost’n Goblins 1985 X X X X
Gun Smoke 1985 X X X
Section Z 1985 X X X
Trojan 1986 X X X
Speed Rumbler 1986 X X X X
Dyn Side Arms 1986 X X X
Legendary Wings 1986 X X X
1943 1987 X X X
Black Tiger 1987 X X X X
Street Fighter 1987 X X X X X
Tiger Road 1987 X X X X X
Bionic Commando 1988 X X X X
F1-Dream 1988 X X X X X

Usage of chips in Capcom arcades from 1984 to 1988 [18].

Even though games did mostly the same thing (move sprites over backgrounds), the
hardware had to be re-invented over and over again.

The evolving pipeline slowed down production since game programming pace was
hindered by bugs in the hardware. Full speed could only be achieved in the later stages
of development which placed Capcom at a further disadvantage to its competitors.

28

https://www.youtube.com/watch?v=45ELzG1ivEA
https://www.youtube.com/watch?v=R5mg6XPqtBs
https://www.youtube.com/watch?v=Em7UwOOBvlA
https://www.youtube.com/watch?v=1qctKI_t5eY
https://www.youtube.com/watch?v=SugLAqaPhqA
https://www.youtube.com/watch?v=mrO9qwGXdy8
https://www.youtube.com/watch?v=cIC2mNNryZg
https://www.youtube.com/watch?v=L1FVWdlQNG8
https://www.youtube.com/watch?v=57lg9pFUgco
https://www.youtube.com/watch?v=0QyLx94PMio
https://www.youtube.com/watch?v=0f4jWQyf-fs
https://www.youtube.com/watch?v=kntCwchJWfw
https://www.youtube.com/watch?v=ZzKStmMAiHM
https://www.youtube.com/watch?v=kVLCv-YgWco
https://www.youtube.com/watch?v=1ZtwOGN-ZeE
https://www.youtube.com/watch?v=zG620nr7vko
https://www.youtube.com/watch?v=zG620nr7vko


CHAPTER 1. INTRODUCTION 1.2. PLAGUED BY PIRACY

1.2 Plagued by piracy

Since Capcom’s PCBs were made with off-the-shelf components, counterfeiters where
able to copy them, dump the software ROMs and build replicas called ”bootlegs”.

Without having to offset the cost of development, these copies sold for less than offi-
cial games. The missed sales weighed heavily on Capcom’s financial health.

1.3 Capcom NT (New Technology)

Production difficulties, competition, and piracy painted an uncertain future for Cap-
com’s arcade division. As history would have it, they not only survived, they thrived.

A new era began in 1988. With the release of Forgotten Worlds and Strider, players got
a first glimpse into the kind of games the Osaka company was now capable of.

Forgotten Worlds (1988)
29



1.3. CAPCOM NT (NEW TECHNOLOGY) CHAPTER 1. INTRODUCTION

Capcom’s CPS-1 announcement flyer (1989)

30



CHAPTER 1. INTRODUCTION 1.3. CAPCOM NT (NEW TECHNOLOGY)

With both games using a mysterious ”new technology” (later renamed CP-System and
CPS-1), production quality was greatly improved. Massive sprites moved on the screen.
They were made of many more colors and evolved on top of several layers simulating
parallax. Levels were more elaborate (Strider had impressive climbable sloped sur-
faces). The audio was not in rest with both digitized sounds and music samples.

Capcom’s first mega-hit came with ”Final Fight” in 1989. Up to that point in time, the
”beat ’em up” genre had been dominated by Technos thanks to its excellent series of
Kunio-kun (known outside of Japan as ”Renegade”) and the mega-hit Double Dragon.

With Cody, Guy, and Mike, Capcom cleared the room. Despite a minuscule budget of
2MiB for the graphics, the art team, let by Akira Yasuda (a.k.a Akiman) used the full ca-
pability of the CPS-1 to provide gorgeous visuals and engaging music. The game-play
was fantastic with various enemies, bosses, and skill-specific heroes. More impor-
tantly the timing was right for the US market where ”beat ’em up” was all the rage.

Final Fight (1989)

”Final Fight” soon became Capcom’s top-selling game [8] and established the company
as an unarguable arcade powerhouse.

31



1.3. CAPCOM NT (NEW TECHNOLOGY) CHAPTER 1. INTRODUCTION

Perhaps the best compliment came from competitors who, years later, would admit to
the demoralizing effect ”Final Fight” had on them.

The people from Capcom hurt Technos Japan a lot with Final Fight which was
superior on every level to Double Dragon III. Not only they had amazing design-
ers, they also gave their teams means to innovate on the hardware level (CPS-1).

For us it was an horrible awakening because it proved we had been unable to
evolve as fast as them.

— Yoshihisa Kishimoto, Planner (Double Dragon & Kunio-kun) [10]

Not only was quality improved, quantity also increased. Thanks to its stable platform
and tools, Capcom was able to release more than thirty titles between 1988 and 1995,
all based on its CPS-1 platform.

Among them was the ”Street Fighter 1” sequel which took the world over by storm.

Street Fighter 2 (1991)
32



CHAPTER 1. INTRODUCTION 1.3. CAPCOM NT (NEW TECHNOLOGY)

Game Name GFX Year
Forgotten Worlds 4 MiB 1988
Ghouls’n Ghosts 3 MiB 1988
Strider 4 MiB 1989
Dynasty Wars 8 MiB 1989
Willow 4 MiB 1989
U.N Squadron 2 MiB 1989
Final Fight 2 MiB 1989
1941: Counter Attack 2 MiB 1990
Mercs 3 MiB 1990
Mega Twins 2 MiB 1990
Magic Sword 2 MiB 1990
Carrier Air Wing 2 MiB 1990
Nemo 2 MiB 1990
Street Fighter II: The World Warrior 6 MiB 1991
Three Wonders 4 MiB 1991
The King of Dragons 4 MiB 1991
Captain Commando 4 MiB 1991
Knights of the Round 4 MiB 1991
Street Fighter II: Champion Edition 6 MiB 1992
Adventure Quiz: Capcom World 2 2 MiB 1992
Varth: Operation Thunderstorm 2 MiB 1992
Quiz & Dragons: Capcom Quiz Game 2 MiB 1992
Street Fighter II’ Turbo: Hyper Fighting 6 MiB 1992
Ken Sei Mogura: Street Fighter II 6 MiB 1993
Pnickies 2 MiB 1993
Quiz Tonosama no Yabo 2 4 MiB 1995
Pang! 3 2 MiB 1995
Mega Man the Power Battle 8 MiB 1995

Capcom CPS-1 based arcade games from 1988 to 1995.

Sitting at the intersection of Capcom’s new found technology and the ”more-with-less”
skills its teams had acquired out of necessity, ”Street Fighter 2” was a quantum leap
in gaming that resulted in a phenomenon.

The eight characters came in different sizes, shapes and genders. They each had their
own moves and special abilities. These characterizations gave them depth. The music
was engaging, the audio effects crisp. The precision of controls invited players to build
up their skills and master their avatar.

The hardware was capable of breathtaking per-line parallax running at a consistent,

33



1.3. CAPCOM NT (NEW TECHNOLOGY) CHAPTER 1. INTRODUCTION

butter-smooth 60Hz to showcase the artistic team’s talent.

Street Fighter 2 tournament flyer

34



CHAPTER 1. INTRODUCTION 1.4. ODE TO CP-SYSTEM

The game immediately developed a cult following. Players had to wait in lines to drop a
quarter. Purchasing ”Continue” was frowned upon by other players impatiently waiting
for their turns. Operators purchased multiple copies of the game to reduce the wait
time, and at the end of the day machines still overflowed with coins [43].

The popularity was such that tournaments with handsome rewards (opposing page)
were held.

By 1995, the series had generated $2.3 billion with 200,000 cabinets sold [12] (60,000
World Warriors units and 140,000 Champion Edition units). By 2017 that figure reached
$10.61 billion [13], making ”Street Fighter 2” the third top grossing game of all time.

Trivia: Did you notice this ubiquitous player nicknamed NiN who owns all the high-
scores of Forgotten Worlds (p23), Final Fight (p25), and Street Fighter II (p26)? It is
the pseudonym of Akira Nishitani, the gameplay planner on all these titles!

1.4 Ode to CP-System

This book is a engineering love letter to the system that enabled Capcom to evolve
from a company fighting for survival to become an arcade household name.

The goal of this work is to understand the CP-System, from the bottom to the top.
This will (hopefully) be achieved by first exposing the hardware and then progressively
moving up, all the way to the programming and game engine architecture level.

Hardware

The hardware of the four systems making the CP-System is explored in the first chap-
ter.

• Control System

• Audio System

• GFX System

• Video System

Beyond the hard reality of silicon and bus lines, a discussion of the design choices and
real-life examples of how games leveraged features is provided when relevant.

35



1.4. ODE TO CP-SYSTEM CHAPTER 1. INTRODUCTION

Software

The subsequent chapters study the software and how to build it. In particular the four
ROM groups resulting in a game are explained.

• Motorola m68k ROM

• Zilog z80 programming and YM2151 (music) ROM

• MSM6295 (audio samples) ROM

• CPS-A/CPS-B (GFX) ROM

These chapters use modern tooling but also feature a ”Back in the days” section which
explores how Capcom used to work back in the 90s.

Peopleware

People involved with either hardware or software are quoted in the relevant sections.
However, Capcom was already a big company by the early 90s and many ended up
participating to the history of the CPS-1. To help the reader keep track of all the actors,
a summary ”people” chapter is available on page 221.

36



Hardware

The project that would later be dubbed by the press ”superchip” [25] started between
1985 and 1986. It was a massive investment that would require two years and five
million dollars [5] (the equivalent of $12 million dollars in 2022).

The significant time and funds invested left no ambiguity in the mind of Capcom exec-
utives. This project would dictate the life or death of the company.

The CP-System is an extremely important business strategy to Capcom: we
have gambled everything on it.

— Yoshiki Okamoto, Capcom Producer [26]

2.1 Goals

The CPS-1 was expected to solve most of Capcom’s arcade division problems. Namely:
reduce production cost, lower selling price, streamline development, increase GFX/S-
FX/processing capabilities, and stop piracy.

Cost reduction would be achieved by mimicking home consoles and standardizing the
platform. Instead of re-designing boards for each game, the hardware would be a con-
stant with the cabinet differentiated only by the software running on it.

Price lowering would allow arcade operators to renew their games more often. This ob-
jective would be reached by designing a platform where new game boards containing

37



2.2. JAMMA CHAPTER 2. HARDWARE

mostly ROMs could be purchased separately from the processor board.

The development toolchain would improve thanks to the stability of the target plat-
form. Without having to constantly rewrite tools and juggle with assembly languages,
programmers could invest in the long term and build an SDK running on powerful work-
stations such as SHARP’s series of X68000s.

Most importantly, games had to catch customer eyes and not pale in comparison to the
competition. The goal was to design a machine with capabilities an order of magnitude
above the current tech stack, able to generate audio and visuals that held their own
compared to titles from powerhouses such as Sega or Namco.

Finally was the problem of piracy. In a country like Mexico it was estimated that
200,000 PCB bootlegs were in circulation [43] despite Capcom recording no sales in
that territory. Multiple concurrent copy-protection mechanisms needed to be imple-
mented.

2.2 JAMMA

Arcade operators frequently updated their cabinets by re-
placing the game it ran in order to keep bringing novelty
to players and quarters to their pockets. Thanks to the
Japan Amusement Machine and Marketing Association,
the process of updating was simple.

The belly of these machines usually hid an abomination
of tangled wires converging in a JAMMA harness where
the motherboard would be inserted as a slot-in. All an
operator had to do was swap the old with the new PCBs.

A JAMMA port has everything a game needs to operate.
Its 28 pins on each side provide inputs (four-direction joy-
stick and three buttons per player, two coin sensors, start
button, and service button), outputs (mono speakers lines
and ”monitor” controls), and even power supply.

The problem with such a standard is that while it im-
proves interoperability, it also hinders innovation.

A few pins on the port are not reserved for a specific us-
age but they could not be used for extra features since
once the harness was wired, operators did not want to

38



CHAPTER 2. HARDWARE 2.2. JAMMA

touch it.

JAMMA parts side pins

JAMMA bottom side pins

When Capcom retrofited Street Fighter 1 pneumatic buttons, they chose to do it with
six buttons per player, which was three more than available in JAMMA. To circumvent
the limitation, they designed a parallel input system.

Since the three JAMMA buttons were used for punches, the extension was labeled the
”kick harness”.

39



2.3. PHYSICAL ARCHITECTURE CHAPTER 2. HARDWARE

Wire Color Pin # Function
Black 1 GND
Black 2 GND
Purple 3 Player 1 Light Kick
Grey 4 Player 1 Medium Kick
White 5 Player 1 Heavy Kick

6 NC
Orange 7 Player 2 Light Kick
Green 8 Player 2 Medium Kick
Blue 9 Player 2 Heavy Kick

10 NC

Kick harness pinouts

2.3 Physical Architecture

The CP-System is made of three printed circuit boards named Board ”A”, Board ”B”, and
Board ”C” which are stacked on top of each other.

40



CHAPTER 2. HARDWARE 2.3. PHYSICAL ARCHITECTURE

41



2.3. PHYSICAL ARCHITECTURE CHAPTER 2. HARDWARE

The connection points are prominent white connectors. Boards A and B are connected
via four 2x32-pins connectors while the boards B and C are connected with four 2x20-
pin connectors. Once plugged into each others, the boards are manipulated as a whole
with no floating parts.

The system was revised over the years. Approximately 229 variations are known to
exist, including bootlegs [15]. The board which will be studied in this book is the one
used to run ”Street Fighter 2”: board A ”88617A-7B”, board B ”90629B”, and board C
”90628-C”.

2.3.1 Board A

Board ”A” is the platform that never changes between games. It features all but one of
the chips in charge of processing data, whether it is game logic, audio, or video.

A summary look at page 37 reveals the powerhouse of the whole system. Even an
untrained eye will notice the size of the Application-Specific Integrated Circuit (ASIC)
and the sheer number of bus lines leading to it. In the center left stands the ”CPS-A”, in
charge of 50% of the graphic system and its 16MHz oscillator. Just above is 384 KiB
of VRAM to store a special kind of framebuffer studied in later pages.

Directly below the CPS-A is the video system and its 8 KiB of SRAM containing the
palettes.

The upper right section is the control system with a Motorola m68k, a 10MHz oscillator,
64 KiB of ”work” SRAM and 192KiB of GFX SRAM.

The middle right part is where the audio system lives. It is made of a Zilog z80, a
3.58MHz oscillator, and 2 KiB of ”work” SRAM. Also in this area are the audio chips
dedicated to music (YM2151 and YM3012) and sound effects (OKI6295).

Finally, in the bottom part we find all the components taking care of the inputs and
outputs of the JAMMA connector. Alongside are three DIP switches which an arcade
operator can use to configure game parameters such as game difficulty or how many
credits a coin grants.

There are many chips on these three boards but it would be a mistake to conclude
that combining many processors inevitably leads to better performance. That would
be ignoring issues such as bus congestion, bus size difference, bus timings or even
processor endianness.

To design an effective multi-CPUs system able to avoid both instruction and data star-
vation is in fact far from trivial.

42



CHAPTER 2. HARDWARE 2.3. PHYSICAL ARCHITECTURE

43



2.3. PHYSICAL ARCHITECTURE CHAPTER 2. HARDWARE

44



CHAPTER 2. HARDWARE 2.3. PHYSICAL ARCHITECTURE

2.3.2 Board B

Board B is where the ROMs chip containing all the assets and instructions specific to
a game are attached via DIP sockets. The chips are not soldered but push-in mounted
(and easily removable).

Even though all ROM chips are located on the same board, they are not all part of an
unified data system on an unified bus.

ROM chips are grouped depending on the system they belong to. Each group has its
own data lines connected to a dedicated bus leading to a specific processor.

Thirty-eight DIP slots are visible on the board. They are grouped in four ROM groups.

Empty board B

45



2.3. PHYSICAL ARCHITECTURE CHAPTER 2. HARDWARE

There are 3x8 = 24 chips, referred to as ”GFX ROM”, dedicated to storing GFX via sock-
ets [1-8], sockets [10-17], and sockets [20-27] for a total of 12 MiB capacity. Because
of the price of ROM, games were never budgeted to allowed the max capacity. Most
titles were granted 2/4MiB, three (the Street Fighter II series) were allowed 6 MiB, and
one (Dynasty Wars) got a whooping 8 MiB.

One socket (9) with 64KiB capacity, referred as ”z80 ROM”, stores both the z80 instruc-
tions and the music assets (instructions for the YM2151).

Two sockets (18-19) accounting for 256 KiB, referred as ”OKI ROM”, store ADPCM sam-
ples and are directly connected to the OKI chip.

Finally eight ROMs holding 1 MiB, referred as ”M68K ROM”, are dedicated to hosting
m68k instructions. Even though they are related to graphics, palettes are also stored
in this ROM group.

Board B with Street Fighter 2 ROMs
46



CHAPTER 2. HARDWARE 2.3. PHYSICAL ARCHITECTURE

Observant readers will have noticed unexplained black chips. For now we’ll say they
are in charge of bus traffic management. In the drawing above, STF29 handles the
GFX ROM and IOB1 handles the m68k ROM. As an exercise, go back to page 38 and
guess which chip handles which ROM/RAM group. Or don’t, I am just a book.

2.3.3 Board C

Board ”C” hosts the ”CPS-B” ASICs video chip. It is in charge of the remaining 50% of
the graphic pipeline, namely mix data from the VRAM and the GFX ROMs towards the
pixel generator. Capcom also concentrated its anti-piracy measures in this chip and as
a result revised board ”C” many more times than board A and board B.

This will be discussed extensively in the copy-protection section of this chapter.

47



2.3. PHYSICAL ARCHITECTURE CHAPTER 2. HARDWARE

2.3.4 PALs

The black chips on the drawing are called Programmable Array Logic (PAL). They play
a crucial role in the creation of the memory maps.

They pack boolean logic (&, |, !) between their input and output lines which simpli-
fies the board, allows tuning the logic without changing the PCB hardware lines, and
reduces the number of components.

Often located near the memory chip group they affect, they are codenamed based on
their function. Since most games use slightly different ROM layout, they usually feature
different PALs. e.g: Street Fighter II’s STF29 which organizes the GFX ROM is named
S224B in Final Fight, and DM620 in Ghouls’n Ghosts.

48



CHAPTER 2. HARDWARE 2.4. LOGICAL ARCHITECTURE

2.4 Logical Architecture

The CP-System features eight processors, organized hierarchically. Commands issued
at the top are carried out to sub-systems via a chain of reports.

There is strong isolation via layering where top systems are unable to access sub-
systems resources. e.g: Control has no access to VRAM and audio ROM.

CP-System processor hierarchy

The control system features a m68k in charge of coordinating inputs (joystick, buttons,
coin) and outputs (video and audio). It can communicate with both the GFX and audio
system main processors.

The audio system runs almost totally in isolation. It is connected to control via two
8-bit latches which the z80 actively polls to retrieve commands related to music and
sound effects. Notice how these latches bridge different data bus widths since control
has 16 data lines while the audio system’s uses 8 data lines.

The graphic system needs more communications and exposes not only its CPS-A and
CPS-B registers but also the GFX RAM where the screen layout is described. The m68k
and the CPS-A use the same bus to access the GFX RAM, so the demarcation is not as
clean as with the audio system. This results in a bit of bus contention.

The video system produces a stream of palette addresses. Combined with the palette
SRAM (where colors are stored) and the DAC, it outputs a signal towards JAMMA. It is
heavy duty in order to keep up with the 59.64Hz refresh rate inflicted on the screen.

49



2.4. LOGICAL ARCHITECTURE CHAPTER 2. HARDWARE

CPS-1 logical architecture with data lines50



CHAPTER 2. HARDWARE 2.5. CONTROL SYSTEM

2.5 Control system

The control system oversees the platform. As a ruler it needs not to excel at a specific
task but to be able to direct and keep tabs on many components. A tailor made task
for the Motorola 68000.

2.5.1 Motorola 68000 CPU

Released in 1979 and clocked at 10 MHz (later upgraded to 12 MHz), the 68000 with
its two stage pipeline [35] (prefetch, exec) and no internal cache was not a particularly
powerful chip by late 80’ standards . Its 1.7 MIPS placed it on par with an Intel 286
10MHz (1.5 MIPS). By 1989 it was already two generations old behind the 1984 M68020
(3 MIPS) and the 1987 M68030 (5 MIPS) [9].

However, this lack of speed did not prevent a a plethora of manufacturers from using
it as their backbone. On the list of machines adopting the m68k can be found the Atari
ST, Amiga, Sega’s System 16, Genesis, Sega CD, Apple Macintosh, Sharp X68000, and
even SNK’s Neo-Geo. It was even IBM’s first choice for its PC before production issues
allowed the Intel 8088 to prevail [34].

Performance is not what made the 68000 reign as the prime hardware design choice.
The reason this CPU was so successful is because it was a great team player.

While most machines used a 16-bit address system, its 24-bit address space allowed
the 68000 16 MiB of RAM, which was considered humongous at the time. This was a
considerable advantage when it came to map peripherals. There was so much address
space that, had they wished so, Capcom engineers could have allowed the 68000 to
see all RAM and all ROM of all systems on the CPS-1.

While other CPUs used small address registers resulting in the infamous segmented
addressing, Motorola gave its CPU 32-bit data and address registers. The elegant flat
addressing and generous eighteen registers made it a favorite among programmers.

51



2.5. CONTROL SYSTEM CHAPTER 2. HARDWARE

Motorola 68000 pin-outs

The 68000 is brought to life via its clock ( CLK ), +5V ( VCC ), and Ground ( VSS ) pins.

The bus is made of D0-D7 for data and A0-A15] for addresses while address ACK
( AS ), Read/Write ( R/W ), UDS , LDS , and Data ACK DTACK are bus control pins.

Arbitration to allow peripherals to master the bus is done with Bus Request ( BR ), Bus
Grant ( BG ) and Bus Grant ACK ( GBA-K ) lines.

The interrupt system is made of a generous three pins IPL0 , IPL1 , IPL2 , and VPA for
control. While other CPUs like the x86s or the z80 have a single interrupt line, the mul-
tiple IPL s can encode an interrupt ID directly which removes the need for an interrupt
controller. How this is leveraged will be explained in the programming section.

System control is done via Error ( BERR ), Reset ( RST ), and Halt ( HALT ).

Finally, the processor status is given by FC0 , FC1 , FC2 and Peripheral control is done
via sync ( E ) and valid sig ( VMA ).

52



CHAPTER 2. HARDWARE 2.5. CONTROL SYSTEM

Trivia: Motorola’s CPU name is due to the total number of transistors totaling 68,000
units. The 68030 and 68040 had more transistors than their names indicate.

Despite the raving description provided in the previous pages, the 68000 could be a
peculiar CPU to program. Its most famous shortcoming involved memory alignment.
While Intel’s line of CISC allows random memory accesses (at the cost of a great per-
formance penalty), Motorola’s CPU will throw an address error exception while at-
tempting to read/write memory not aligned on a 16-bit ( WORD ) boundary.

This limitation is rooted all the way down to the CPU pins where there is no A0 line.
Pins UDS and LDS indicate which of the high-byte or low-byte parts of a 16-bit WORD to
access.

Trivia: The 68000 has 32-bit address registers but used only 24-bit addresses.
These ”unused” eight bits were hijacked by system engineers to mark address as
”locked” or ”purgeable”. These programs promptly broke when running on 68020,
which used a 32-bit address bus.

Perhaps the best testament to the quality of the 68000 design is that as of 2022, 43
years after its release, Motorola’s immortal CPU is still in production.

2.5.2 Motorola 68000 ”work” RAM

With 16-bit data bus processors it would be fair to expect a memory system built with
16-bit RAM chips. However these were expensive and a closer look reveals a bunch of
65256BLSP-10 offering fast access time (100ns SRAM) and 32 KiB capacity but only
8 data lines.

53



2.5. CONTROL SYSTEM CHAPTER 2. HARDWARE

Using cheaper off-the-shelf 8-bit RAM chips instead of 16-bit RAM chips helped to drive
down cost. Moreover, these are not hard to combine into a 16-bit RAM system via two-
way interleave.

32 Ki x 16-bit RAM system with two 32 Ki x 8-bit chips

The two 65256BLSP-10 are not aware of each other. They are connected to the same
15 address lines and the same control lines for Write Enabled ( WE ) and Read Enabled
( OE ). However, they are connected to different lines of the data bus.

Trivia: Interleaving chips can also help to beat memory latency by increasing
throughput. Early GPUs such as the Voodoo 1 and Voodoo 2 by 3Dfx extensively re-
lied on this technique, even using four-way interleave to keep up with the bandwidth
requirements [6].

Notice how the address lines of the SRAM chips are directly connected to the 68000
address bus. There is no mechanism to prevent these two chips from responding to
all bus requests.

This is an over-simplification to introduce complexity progressively. We will see next
how chips are organized to not conflict with each other.

Trivia: 64 KiB of work RAM seems like a lot but was not always enough. Some games
found themselves with not enough RAM and too much GFXRAM. Street Fighter 2
Champion Edition programmers resolved to generating and executing instructions
from the GFXRAM [16]!

54



CHAPTER 2. HARDWARE 2.5. CONTROL SYSTEM

2.5.3 Motorola 68000 Program ROM

The 68000 instructions are provided by eight 27C010 which are 128 Ki x 8-bit chips.
They work like the 65256BLSP-10 except that they have sixteen address lines instead
of fifteen (and therefore higher capacity).

Like the RAM, ROM chips are combined via two-way interleaves to provide 16-bit data.
What is peculiar is how the four pairs are arranged to build a memory system with
larger capacity.

Two first pairs. 4 x (128 Ki x 8-bit) making a 256Ki x 16-bit system

To place one pair after another in memory space, the CE (Chip Enabled, sometimes
labeled CS for ”Chip Selected”) pin is leveraged. Asserting it lets a chip respond to
an address request while de-asserting it keeps it dormant. All CEs on all chips on all
boards are controlled via PALs.

In this example, the first four out PAL pins must be programmed as follows.

Output 0 = !(A16 | A17 | A18 | A19 | A20 | A21 | A22 | A23)

Output 1 = !(A16 | A17 | A18 | A19 | A20 | A21 | A22 | A23)

Output 2 = A16 &! (A17 | A18 | A19 | A20 | A21 | A22 | A23)

Output 3 = A16 &! (A17 | A18 | A19 | A20 | A21 | A22 | A23)

The first pair of chips is mapped to addresses 0x000000 while the second pair is
mapped to 0x40000 . With the same logic, two more pairs of 27C010 are mapped
at 0x80000 and 0xc0000 for a total of 1 MiB ROM.

By now, it should be abundantly clear that the CE / CS lines are absolutely crucial to
build a memory map. Even though they won’t be mentioned again, keep in mind they

55



2.5. CONTROL SYSTEM CHAPTER 2. HARDWARE

impact every chip on the boards (except the CPUs).

2.5.4 68000 Memory Map

Thanks to the PAL chips enabling/disabling components, the 68000’s memory space
is partitioned. The result is summarized in a ”memory map”.

Start End Size Function
0x000000 0x3FFFFF 3 MiB ROM
0x800000 0x800007 8 B JAMMA Players Inputs
0x800018 0x80001F 8 B JAMMA Dip Switches
0x800030 0x800037 8 B JAMMA Coin sensors
0x800176 0x800177 1 B Kick harness
0x800100 0x80013f 64 B CPS-A registers
0x800140 0x80017f 64 B CPS-B registers
0x800180 0x800187 8 B Sound commands (latch 1)
0x800188 0x80018F 8 B Sound commands (latch 2)
0x900000 0x92FFFF 192 KiB GFXRAM
0xFF0000 0xFFFFFF 64 KiB Work RAM

Control system memory map

2.5.5 Putting it all together

The details of the 68000’s operations will be studied in-depth in the next chapters but
we can already guess how the CPU operates based on what it has access to. As the
m68k boots, it starts to retrieve instructions from its ROM. For regular operations such
as store/load, and also to keep track of its call stack, it uses its work RAM.

The game engine starts and reads the configuration set by the arcade operators via the
DIP switches. While the game runs, the CPU continuously polls the JAMMA inputs.

The engine reads JAMMA inputs and delegates generation of video and audio signal
to its subordinates. In turn these generate signals towards JAMMA outputs.

For the video, the m68k describes the scene to be displayed via the GFXRAM. The
graphic ASICs are then instructed how to retrieve the scene data via their registers.

For the audio, the m68k issues simple commands to the z80 via two 1 byte latches
using a protocol detailed later.

56



CHAPTER 2. HARDWARE 2.6. AUDIO SYSTEM

2.6 Audio system

The audio system runs in isolation from everything else. It has its own bus, its own
RAM, its own ROM systems, and its own oscillators. Its only opening to the outside
world are two latches to receive commands from the control system and two JAMMA
pins to output sound.

The component in charge is a surprisingly light-weight z80 running at 3.58 MHz.

2.6.1 z80 CPU

Released in July 1976 by Zilog, the z80 was intended as an Intel 8080 killer thanks to a
compatible instruction set. It ended up becoming an icon of the 70s, sharing the scene
with the equally mythical MOS 6502 well into the mid-80s.

The z80 was widely used in home computers, notably featured in the Sinclair ZX Spec-
trum and the Amstrad CPC. It also found its way into military applications, musical
equipment (Roland Jupiter-8), embedded systems, and multiple coin-op arcades.

As an 8-bit era processor, the z80 uses 8-bit data registers, 8-bit data bus, 16-bit ad-
dresses, and 16-bit address bus. In terms of processing power, despite its ”overlapping
fetch/execute” design the CPU had become particularly weak by late 80s standards
with 0.45 MIPS. It was three times slower than the 68000 featured in the control sys-
tem [9].

Processing power was not the deciding factor in electing the master of the Sound
system, though. Thanks to its two powerful co-processors, the CPU would not have
to process much data, making the MIPS figure irrelevant. A much more important
characteristic was how well it integrated with its two sidekicks.

Thanks to its 8-bit design, the z80 was a perfect fit for the 8-bit YM2151 and the 8-
bit MSM6295. Having been around for a while, the ”outdated” CPU was inexpensive.
Lastly, it enjoyed a good reputation thanks to its simple programming interface.

57



2.6. AUDIO SYSTEM CHAPTER 2. HARDWARE

Trivia: The number of pin lines on a chip dictates its packaging name. DIP (Dual
In-line Package), like the z80 below, are recognizable by their two lines of pins. The
Motorola 68000 on page 46 with its four sides of pins belongs to the ”Chip carrier”
family.

Packaging can use materials such as plastic or ceramic in which cases they are
referred to by increasingly barbaric acronyms such as CLCC or PLCC.

The z80 comes to life thanks to its CLK (clock ), +V5 (power), and GND (ground) pins.

The bus lines are dedicated D0-D15 for addresses and A0-A7 for data. For control, RD
indicates read while WR indicates a write operation. WAIT is used to add waitstates.

Although it is capable of relinquishing control of the bus via BUSRQ (Bus Request),
BUSAK (Bus Acknowledge), MREQ (Memory Request), and IORQ (IO Request), the z80
completely own its bus and never shares it. In fact, the BUSRQ and BUSAK pins are
not even connected. Because it is isolated via latches, the z80’s bus never suffers
contention.

Other pins are NMI Non Maskable Interrupt, RESET Restart CPU, HALT Waiting for
interrupt, M1 Fetching next instruction. The INT Interrupt line will be of crucial interest
in the programming section. An interrupt controller is usually necessary but the simple
needs of the sound system allows it to work without one.

The RFSH pin (ReFreSH signal) tics at regular intervals to trigger DRAM refreshes.
Since the sound system uses only SRAM this pin was re-purposed in a creative way
for the CPS-1.5 ”Kabuki” (page 121).

58



CHAPTER 2. HARDWARE 2.6. AUDIO SYSTEM

2.6.2 z80 Work RAM

The amount of RAM provided to the z80 may appear scandalously small by today’s
standards. However because all it has to do is forward requests from the latches to
the MSM6295 and feed the YM2151 music notes, the z80 needs few resources. Its bus
is connected to a single 2Ki x 8-bit CXK5816SP chip.

2.6.3 z80 ROM

The ROM is made of a simple 64Ki x 8-bit 27C512 chip. It is much larger than the RAM
in order to store YM2151 instructions along the z80 instructions.

These ROM chips work like those previously described, with pins such as power,
ground, addresses, data, control, and of course the crucial CE . What is peculiar is the
z80 uses 16-bit address registers which allows 65,536 addresses. There is not enough
address space for all registers, ROM, and RAM totaling 67 KiB.

The solution is to map only the portion of the ROM that contains instructions (32KiB)
statically and to use a banking system to provide a 16 KiB ”view” into the remaining
32KiB of the ROM where music assets are stored. This is accomplished simply with a
PAL ( SOU1 ) and was a source of great pain to the developers (see page 132).

Hopefully the thought of this awful bank switch control register will leave no doubt with
regards to the awesomeness of the m68k and its 24-bit flat addressing system.

2.6.4 z80 Memory Map

Start End Size Function
0x0000 0x7FFF 32 KiB ROM (32 KiB out of 64 KiB)
0x8000 0xBFFF 16 KiB Bank-switched view of rest of ROM
0xD000 0xD7FF 2 KiB RAM
0xF000 0xF001 2 B YM2151 registers
0xF002 0xF002 1 B OKI OKI6295 registers
0xF004 0xF004 1 B Bank Switch control ( SOU1 )
0xF006 0xF006 1 B OKI MSM6295 H / L mode
0xF008 0xF008 1 B Sound commands (latch 1)
0xF00A 0xF00A 1 B Sound commands (latch 2)

Audio memory map

59



2.6. AUDIO SYSTEM CHAPTER 2. HARDWARE

2.6.5 YM2151

Selecting the music chip was not a matter of shopping between vendors but rather
picking one from Yamaha. Thanks to the licensing of Frequency Modulation (FM)
patents from Stanford in 1975, the Japanese founder ruled the world of electronic mu-
sic.

Trivia: Yamaha licensed FM technology from Stanford starting in 1975 at the cost
of $10/keyboard. Licensing was renegotiated in 1985 on a per-chip basis [7].

Three architectures stood out in the early 90s. Between the OPL2 3812, the OPN2 2612,
and the OPM (OPerator type M) 2151, the latter was selected for its versatility.

The principle of Frequency Modulation is to use simple wave forms to modulate each
other in a Modulator/Carrier pair, resulting in complex waveforms [39].

Carrier wave

Modulator wave

Resulting wave
60



CHAPTER 2. HARDWARE 2.6. AUDIO SYSTEM

The YM2151 is able to play 8 channels (a.k.a voices) of audio. Each channel consists
of four operators (a.k.a slots) which can be setup to produce either percussion or in-
strument sounds.

Slots are even able to modulate their own output. With proper adjustments, virtually
any wave form can be obtained.

Some of the wave forms the YM2151 can generate

Other parameters can be applied to a channel’s output. The envelope features ad-
justable Attack, Decay, Sustain, and Release Rate.

The huge advantage of FM synthesis is the small amount of data required to store a
melody. After the instruments are defined, only the notes of each instrument and their
tempo need to be recorded. Yamaha’s technology is so efficient that in Street Fighter
2 the whole Sagat main stage music (2mn6s, 10KiB) uses fewer bytes than one Tiger
Uppercut’s ADPCM sample (777ms, 12KiB).

61



2.6. AUDIO SYSTEM CHAPTER 2. HARDWARE

Looking at the YM2151, we see previously discussed pins such as +5V , GND , and CS .
The CLK is connected to the same oscillator as the z80 for a frequency of 3.58MHz.
The D0-D7 address/data pins (multiplexed via A0 ) exactly fit the z80’s 8-bit data bus
with read ( RD ) and write ( WR ) control.

One pin is of particular interest to us. IRQ allows the YM2151 to generate interrupts
based on two internal counters. It’s usage is detailed in the programming section.

The only drawback of this chip is that it does not features a DAC (Digital to Analog
Converter). It generates a signal on the Serial Output ( SO ).

2.6.6 YM3012

The YM3012 is a DAC connected to the YM2151 digital output SO . The analog signal it
outputs on CH1 and CH2 is mixed with the signal from the OKI6295 towards JAMMA.

62



CHAPTER 2. HARDWARE 2.6. AUDIO SYSTEM

2.6.7 MSM6295

For audio sample playback, Capcom spared no expense and selected a chip capable
of 4-bit ADPCM audio decompression over four channels, the MSM6295 (a.k.a OKI).

Despite running at only 1MHz, the MSM6295 is a god-send to a game board designer.
It does not need instructions as its function is fully hard-coded. Its address ( A0-A15 )
and data ( D0-D7 ) lines are directly connected to its own 256 KiB ROM, on a local bus
where assets are stored. This avoids contention with the z80 bus.

These make it a fully enclosed digitized sound system only communicated via its input
lines ( I0-I7 ), a perfect match for the z80 data bus, from which it receives commands.

To get to work, the OKI only needs to receive a sample ID [1-127], a channel [1-4], and
a volume [0-127]. Via a lookup table in its ROM, the sample offset is retrieved and
playback starts with an analog signal generated on DA0 .

Up to four channels can be active simultaneously. Since games don’t need that many
sound effects simultaneously, two channels are usually reserved for sound effect play-
back while two are dedicated to embellishing music with samples.

63



2.6. AUDIO SYSTEM CHAPTER 2. HARDWARE

ADPCM lossy compression is able to divide space consumption by three by converting
12-bit PCM samples into 4-bit nibbles.

Making choices

While the choice of the Yamaha music chip left little ambiguity to the hardware de-
signer, the MSM6295 was a different story.

First, the sampling rate expected in ROM is directly correlated to the clock rate of the
MSM6295. Second, the OKI can operate in two modes via its SS pin. In high quality
(H), the divisor is 132 and in low quality (L) the divisor is 165.

Running within [1MHz-5MHz] in two modes, the goal was to maximize quality while
minimizing required storage. The table below shows that the best quality (37kHz) only
allowed storage of 13 seconds of samples, while the lowest quality (6060Hz) gave 86
seconds.

H L

MHz Sampling Rate (Hz) Time (s) Sampling Rate (Hz) Time (s)
1 7575 69 6060 86
2 15151 34 12121 43
3 22727 23 18181 28
4 30303 17 24242 21
5 37878 13 30303 17

MSM6295 operating modes (with ROM = 256 KiB).

In the end, Capcom connected the OKI to the GFX crystal (16MHz) and divided fre-
quency by 16 to run at 1MHz. Along with a SS pin set to H, the system uses a 7,575Hz
sampling rate.

2.6.8 PCM 101

The MSM6295 input and output are respectively ADPCM and PCM streams. To deepen
our understanding of the chip requires studying how Pulse-Code Modulation works.

Whether for recording or playing, PCM is a series of values directly representing the
position of a device diaphragm. In the case of recording, the diaphragm is in a micro-
phone. In playing, it is in a loud speaker.

64



CHAPTER 2. HARDWARE 2.6. AUDIO SYSTEM

A speaker cone moves proportionally to the PCM values

Sampling rate and bit depth are the two parameters impacting the fidelity of the signal
capture/restitution.

PCM values (4-bit samples) quantizing an analog signal

The higher the sampling rate (on the X axis), the more often the cone position can be
adjusted. The higher the bit depth (on the Y axis), the more accurately the cone position
can be set. Stereo is achieved by interleaving two PCM streams.

Sound quality increases linearly with data rate.

• Land-line phones use 8,000Hz/8-bit mono using 8,000 Byte per Second.

• CDs use 44,100Hz/16-bit stereo using 176,400 Byte per Second.

65



2.6. AUDIO SYSTEM CHAPTER 2. HARDWARE

2.6.9 ADPCM compression

ADPCM is able to take 12-bit PCM samples and compress then as 4-bit nibbles by en-
coding only the difference between PCM samples. Decompressing an ADPCM stream
consists of adding a delta value to the last decompressed sample, over and over again.

The delta is encoded with a system of weighted offsets called ”step”, which is accurate
for small variations but coarser when deltas increase.

The first bit in a nibble indicates the sign of the delta (+/-). The three other give a
”magnitude”. The magnitude depends on the ”step size” of the ADPCM decompressor.

ADPCM nibble

In its initial state, the step size is 16 which means bit three is +/-16, bit two +/-8 and bit
one +/-4. In this state, the delta to be applied can vary from 0 ( b000 ) to +/- 28 ( b111 ).

The decompressor constantly monitors how much of the step size is used. The step
size is adjusted after each sample via a predetermined transition table indexed via the
magnitude value.

int stepSizes [49] = { // Indexed by stepSizeIndex

16, 17, 19, 21, 23, 25, 28,

31, 34, 37, 41, 45, 50, 55,

60, 66, 73, 80, 88, 97, 107,

118, 130, 143, 157, 173, 190, 209,

230, 253, 279, 307, 337, 371, 408,

449, 494, 544, 598, 658, 724, 796,

876, 963, 1060, 1166, 1282, 1411, 1552};

int stepSizeIndex = 0; // Initial value (0) points to 16

// indexed by MAG 0 1 2 3 4 5 6 7

int transitionTable [8] = {-1, -1, -1, -1, 2, 4, 6, 8};

The transition table dictates how to adjust the step size index. ADPCM is aggressive
in increasing the index for magnitude values ranging from 4 to 7 where it is bumped
between 2 and 8 . Meanwhile it is conservative in decreasing the index for small mag-
nitude values ranging from 0 to 3 where it is always modified in -1 decrements.

66



CHAPTER 2. HARDWARE 2.7. VIDEO SYSTEM

2.7 Video system

The goal of the video system is to pilot the CRT (Cathode-Ray Tube) where images are
rasterized for the player to see.

Even though it is connected via an intermediate JAMMA port, there is no abstraction
layer or custom protocol. The four red, green, blue, and sync JAMMA output pins are
connected directly into the CRT inputs.

The four wires needed to drive a CRT

There are four wires but in fact five signals are transmitted. Each red, green, and blue
signal has its own wire, while the sync wire carries two signals multiplexed as horizon-
tal sync pulse and vertical sync pulse. Because it composes two signals, it is called
CSYNC (Composite SYNC).

These five signals are everything a CRT needs to work.

Trivia: The CRT is purely a signal consumer. It never sends anything ”back” on these
wires. It is a common misconception that the CRT emits VSYNC. In fact, all signals
are generated by the video system.

2.7.1 CRT 101

Because the timing of operations is propagated deep in the GFX system, it is important
to understand how a CRT works.

At its core, a CRT is a line drawing machine. It draws horizontal lines one after another,
from left to right and top to bottom. While it scans a line, three analog signals (one
for each RGB colors) indicate the quantity of electrons to shoot from three guns. The
higher the signal, the more electrons shot and the more vivid the color.

On the way toward the panel, electrons are filtered through a shadow mask to make
sure they hit the proper type of colored phosphor receptacles which are grouped by
three in RGB ”slots”. The electron beam-slot is not a one to one relationship. The beam
can be larger or smaller than a slot.

67



2.7. VIDEO SYSTEM CHAPTER 2. HARDWARE

Electron gun, mask, and slots

Slots are not aligned horizontally. When the gun shoots electrons it doesn’t really know
on which slots they will land. They can hit all in one slot, or two halves of two slots, or
other configurations depending on slot density and beam dispersion.

The only guarantees are that an electron from a cannon color lands in a phosphor
receptacle of the same color, and that the electron beam height is constant on a line.

A scanline of electron hits wherever

Smaller slots can render the horizontal analog signals with better fidelity.

With this duality of lines and signals, a CRT is both a numeric and an analog system.
The number of scanlines is finite (i.e: there is a set number of these elements) but there
is no horizontal number of ”dots”, ”points”, or ”pixels” since the three color intensity
signals are analog.

68



CHAPTER 2. HARDWARE 2.7. VIDEO SYSTEM

2.7.2 Syncing

The RGB signals describe lines to be drawn but the CRT needs to know where to draw
them. The control signal allows synchronization of the cannon orientation with the
lines’ color signal so they are rasterized where they should. Without syncing, the image
appears distorted.

A desynced CRT. Lines are correct but not located where they should

VSYNC signal tells the CRT it should reset the gun’s vertical position to 0 at the top of
the screen. This motion from bottom to top is called vertical retrace. During the retrace
the gun must stop shooting electrons. This is achieved by requesting a black color on
the RGB signal. This ”blanking” of the RGB lines happens a little bit before and after
VSYNC. The total time not drawing anything is called VBLANK.

HSYNC signal tells the CRT that a line has been drawn and the gun’s horizontal position
should be reset to the left of the screen. This motion is called horizontal retrace. Like
the VBLANK, there is a HBLANK timespan.

69



2.7. VIDEO SYSTEM CHAPTER 2. HARDWARE

2.7.3 Fields

The process of drawing scanlines over the screen, also called ”raster scan”, is flawed
as described. If the gun draws a line and upon HSYNC goes back to the left, it would
be drawing the same upper left line over and over again.

It is barely noticeable but scanlines are not drawn straight. There is a slight downward
slope. This way, when HSYNC is received and horizontal position is reset, the next line
is drawn below the previous.

As long as VSYNC is issued at the same time as a HSYNC, the CRT lines are always on
the same location on the screen.

In the next drawing, see what happens if VSYNC 3 is issued in the middle of the last
line being draw (between HSYNC 2 and 4 ).

70



CHAPTER 2. HARDWARE 2.7. VIDEO SYSTEM

Because only half a line was drawn at the bottom, the gun only progressed down half a
space vertically. As a result, the next frame will be interlaced with the previous. This is
a technique used by TV broadcast such as NTSC in USA and Japan. A signal transmits
frames at 30Hz, each contains two ”fields” to be drawn interlaced at 60Hz.

While interlacing is acceptable for TV images, it is not for gaming as the artifacts are
disturbingly visible on moving text and sprites.

The solution to this problem is to only use one field and never display anything on the
other one. Doing this means designing a video system where VSYNC is always issued
along with a HSYNC. The drawback is that since CRTs were build to display interleaved
images, they provision for space between lines.

Since this space is not used for another field, the resulting effect is black horizontal
strips on the screen. Note that the problem is compensated for by line bleeding so the
black lines are not as big as the visible lines.

Non-interlaced scanning show a black space between lines

Besides avoiding interlacing, many other decisions had to be made.

71



2.7. VIDEO SYSTEM CHAPTER 2. HARDWARE

2.7.4 Making choices

To craft a video system means building a signal generator and a color generator. We’ll
study the signal generator first. This circuit is built to take an oscillator ticks as input
and to output three signals. One signal tells for how long the color generator should
hold a color on the color lines, one signal triggers HSYNC, and one signal triggers
VSYNC.

The oscillator feeds an ”horizontal register” which increases one by one each tick.
Upon reaching its max value, the register wraps around to both issue a HSYNC and
increase a ”vertical register”.

Likewise, when the vertical register reaches its max value, it wraps around and gener-
ates a VSYNC.

The color duration has no register counting the ticks. Each tick indicates that a dot is
being drawn.

A designer can pick any oscillator frequency (which we call dot-clock from now on).
However, they must be careful to choose vertical max value (number of lines) and hor-
izontal max value (number of dots per line) such that vertical frequency and horizontal
frequency are compatible with what a CRT can sync on.

As these CRTs of the 90s were meant to TV sets consuming NTSC broadcast so the
two imperatives were to be close to 59.95 Hz VSYNC rate and 15,734 Hz HSYNC rate.

72



CHAPTER 2. HARDWARE 2.7. VIDEO SYSTEM

The horizontal frequency and vertical frequency are directly derived from the three val-
ues picked for the signal generator. Plugging the numbers into the following formula
allows to verify how close a system is from being compatible with a CRT.

Horizontal frequency =
dotclock

numDots

Vertical frequency =
dotclock

(numDots ∗ numLines)

Before looking at Capcom’s choices, let’s look at the decisions made by video design-
ers for systems contemporary to the CP-System.

Genesis (H40) [19] Neo-Geo Super NES
dots 420 384 341

lines 262 264 262

dot-clock (Hz) 6,711,647 6,000,000 5,369,318

HSYNC frequency (Hz) 15,700 15,625 15,745

VSYNC frequency (Hz) 59,92 59.18 60.09

Signal generator values for Genesis, Neo-Geo, and Super NES

Keep in mind that these resolutions are not what programmers can count on. Because
of overhead discussed in the next section, some lines and dots are unavailable. The
resolutions presented here are called ”overscan resolutions”.

Capcom video signal choices

The CPS-1 uses an overscan resolution of 512x262 . The dot-clock is 8 Mhz which is
obtained by halving the CPS-A/CPS-B 16 MHz clock (it spares an oscillator chip).

CP-System
dots 512

lines 262

dot clock (Hz) 8,000,000

HSYNC frequency (Hz) 15,625

VSYNC frequency (Hz) 59.6374

Signal generator values for CP-System

73



2.7. VIDEO SYSTEM CHAPTER 2. HARDWARE

Besides these vertical and horizontal frequency ”rules”, Capcom engineers had addi-
tional constraints. Because the graphic system works with tiles (which we will study
in the next section) using sizes of 8, 16, or 32 pens, both axis dimensions had to be
multiples of eight.

Blanking

The CP-System overscan resolution of 512x262 seems to indicate a very high reso-
lution for the time. But not all lines and dots on a line can be used, some have to be
sacrificed to solve three problems.

First, there is the problem of retracing vertically and horizontally. Cannon movement
is not instantaneous, so while it moves horizontally or vertically, it would leave a visi-
ble diagonal of electrons across two scanlines (horizontal reset) or across the whole
screen (vertical reset).

The second problem is wobbling. Because a reset changes the cannon position
abruptly (as opposed to the smooth progressioin during a scanline), it takes a little bit
of time for the electron beam to stabilize again after it completes the reset.

Lastly, the video system needs breaks to read or write data without generating visible
artifacts. This includes swapping buffers, updating palette colors, and retrieving the
list of sprites/tilemaps to draw on the next scanline.

The solution to these three problem is named blanking. By setting the color signals to
zero, the cannon shoots no electrons. Blanking hides artifacts and create a window
of time where the video system is inactive. There is a vertical blanking called VBLANK
and an horizontal blanking called HBLANK.

Capcom’s second set of video signal choices

Out of the 262 total lines available, Capcom decided to use 224 and let VBLANK
last for 262− 224 = 38 lines. They used 384 dots per line out of 512 total leaving
512− 384 = 128 dots to HBLANK. Developers can count on a resolution of 384x224 .

CP-System Genesis (H40) Neo-Geo Super NES
Usable dots 384 320 320 256

HBLANK (dots ) 128 100 64 85

Usable lines 224 224 224 224

VBLANK (lines) 38 38 40 38

Usable resolution for CP-System and contemporaries
74



CHAPTER 2. HARDWARE 2.7. VIDEO SYSTEM

Pixel Aspect Ratio

The scanlines of a CRT have a fixed height but the width of the dots vary from machine
to machine because of their dot-clock. The width/height dot ratio is called the Pixel
Aspect Ratio (PAR).

An ”ideal” system would have ”square” dots with a 1:1 PAR. For these ”TV” CRTs built
with a set physical scanline height, square pixels were guaranteed if the dot clock was
6,136,363 Hz ( 13522 ). A system using a higher frequency would draw narrower dots while
a system using a lower frequency would draw wider dots.

Pixel Aspect Ratio of four systems (exaggerated)

Let’s look first at the Neo-Geo which has a PAR close to 1:1, resulting in square pixels [20].

Metal Slug as stored in the Neo-Geo ROM, SAR = 320:224
75



2.7. VIDEO SYSTEM CHAPTER 2. HARDWARE

The PAR formula is a simple multiplication by a fraction.

PAR =
dotclock MHz

135
22

=
dotclock MHz ∗ 22

135

The Neo-Geo MVS, with its dot-clock of 6,000,000 Hz has a PAR of 45:44. Combining
its 320x240 Storage Aspect Ratio (SAR) with its PAR gives the Display Aspect Ratio
(DAR) of the physical image seen on the CRT.

Display Aspect Ratio (DAR) = PAR ∗ SAR =
45 ∗ 320
44 ∗ 224

= 1.46

The near-square pixels result in minimal distortion when the image is presented on a
4:3 CRT. This is very convenient for artists since they can digitize their assets 1:1 and
see their artwork rendered as intended.

Metal Slug as it appears on a CRT, DAR = 1.46
76



CHAPTER 2. HARDWARE 2.7. VIDEO SYSTEM

The CPS-1 with its resolution of 384x224 and its dot-clock of 8,000,000 Hz results in
a PAR of 135:176. Its DAR somewhat matches the CRT aspect ratio of 4:3 ( = 1.333).

Display Aspect Ratio = PAR ∗ SAR =
135 ∗ 384
176 ∗ 224

= 1.31

However its narrow pixels generate a significant amount of distortion, which was a
huge problem for artists. If they digitized their drawings as is, the CRT would present
to players a vertically-stretched version of the original vision. As illustrated on page 72,
an artist drawing a circular sun on paper, digitizing it as is, and running it via the CPS-1
would see an oval result on the screen.

Akiman reported the problem right away when he started working with the new plat-
form.

When I was working on my first CPS-1 game, Forgotten Worlds, I noticed the
problem of aspect ratio right away.

- ”The pixels are not square!” I told my boss.

- ”Impossible, I ordered them to be square!” he replied.

He then proceeded to call hardware on the spot.

- ”The pixels are square!” he added.

Later I protested again to which my boss replied it was a calculation error.

— Akiman, Lead Artist [11]

Could it has been an oversight? Could it actually been a calculation error? In all likeli-
hood the hardware designers wanted to give the CPS-1 a very high horizontal resolution
to make it competitive, even if this meant making artists’ lives a little bit difficult.

Artists managed to work around this annoying ”feature” by drawing their assets pre-
stretched (as seen on 73). Their process is elaborated on page 137.

In the rest of the book, the format of images will vary. For real-estate reasons, the
”screenshot” may be shown with SAR proportions or DAR proportions depending on
the needs. The same goes with the drawings. Since the difference is pretty significant
between squares and rectangles (as seen on page 73), aspect ratio is not mentioned
again.

77



2.7. VIDEO SYSTEM CHAPTER 2. HARDWARE

78



CHAPTER 2. HARDWARE 2.7. VIDEO SYSTEM

79



2.7. VIDEO SYSTEM CHAPTER 2. HARDWARE

Trivia: The designers of R-Type at Irem were unsatisfied with the default ”standard”
224 usable lines of a CRT.

They calibrated their M72-System registers to draw 284 lines, 512 dots, and used an
8 Mhz dot-clock. Leaving 128 dots to HBLANK and 28 lines to VBLANK resulted in
a resolution of 384x256 which was higher than other arcade titles at the time.

The trade-off was a vertical refresh rate of 55.017605 Hz which was visually less
pleasing and dangerously 10% off from the CRT recommended values. This refresh
rate is difficult to replicate for ”modern” emulators but what an impressive feat for
a 1987 system!

2.7.5 Color Space

Before moving to the color generator, a characteristic to decide on was the color depth.

The CPS-1 uses 16 bits to encode colors with 4 bits per RGB component for a total of
12 bits allowing 4,096 colors.

CPS-1’s 12-bit per color cube

The four remaining bits express brightness to allow 16 shades of a base color. In total,
65,536 different colors are available to artists.

80



CHAPTER 2. HARDWARE 2.7. VIDEO SYSTEM

All darker shades of red using a {0xF,0x0, 0x0} base.

2.7.6 Putting it all together

Knowing how a CRT works and what decisions Capcom engineers made, we can now
understand the video signal timings.

With a ”pixel” clock coming from the GFX oscillator (16MHz) halved to 8MHz, a color
is issued every 1s / 8MHz = 125ns.

The horizontal resolution of 512 mandates a HSYNC to be generated every 512 * 0.125
= 64µs. The resulting refresh rate is 8MHz / (512x262) = 59.637Hz and a VSYNC is
issued every 1000ms/59.637 = 16.7ms.

A summary drawing exposes all timing and regions, as well as the significant part of
the image not usable due to horizontal and vertical blanking.

81



2.7. VIDEO SYSTEM CHAPTER 2. HARDWARE

Keep in mind that HSYNC happens 262 times (green vertical lines) but VSYNC occurs
only once. The dashed horizontal red line in the previous drawing is only here to repre-
sent where the electron gun resets to the top of the screen.

The sheer amount of black in the drawings shows the extent of the overhead associ-
ated with beam wobbling management. But the time spent not drawing is not wasted.
It is leveraged to perform background operations such as modifying palette colors.
e.g: Sixteen lines are necessary for a palette page (32 palettes) ”upload”.

Same concept but closer to what happen in CRT screen space

2.7.7 Color generator

To generate color signals, the CPS-1 uses a palette system storing colors via 4 x 2Ki x
1B CXK5814P-35L SRAM chips.

These memory elements feature pinouts explained earlier like Power +5V , Ground
GND , Addresses A0-A10 , Data D0-D7 , Write ( WE ), Read ( OW ), and Chip Enabled ( CE ).

What is uncanny is that the component connected to the address lines is not the one

82



CHAPTER 2. HARDWARE 2.7. VIDEO SYSTEM

connected to the data lines.

The CPS-B drives the address bus at 8MHz to generate the DAC 16-bit inputs, which in
turn generates three analog Red, Green, and Blue signals. In parallel, it generates the
HSYNC and VSYNC signals, composited into CSYNC.

Notice how one line out of twelve is used not for addressing but for CE ing chip pairs.

Colors are grouped into palettes containing 16 units. As will be studied later, the GFX
system features 6 layers and each of them allows 32 palettes (called page). This brings
the total to 6*32*15 = 2,880 colors which requires 12-bit to be indexed.

The palette SRAM chips are nearly constantly used to generate colors. Their content
can only modified during VBLANK.

83



2.7. VIDEO SYSTEM CHAPTER 2. HARDWARE

Twelves palettes from the characters of a famous Capcom fighting game. Can you
recognize them?

Hint: RKCHGZBD-BVSB.

84



CHAPTER 2. HARDWARE 2.8. GRAPHIC SYSTEM

2.8 Graphic system

The graphic system is the most complicated to understand in the whole machine. It is
complex because it must satisfy three demanding systems.

On one side, there is Control which requests an elaborate composition of backgrounds
and sprites to appear on the screen. The description is much more verbose than a sim-
ple integer received by the Sound system to play a sample or a music. Communication
happens by not only exposing the graphic registers, but also sharing access to a shared
memory called ”GFX RAM”. Control’s m68k writes ”draw commands” which the GFX
system reads and executes.

On the other side is the 8 MHz Video system which mercilessly demands a pixel color
every 125ns. The CRT cannons never wait and a color must be issued on the dot, no
matter what.

Finally there is the GFXROM, a huge repository of up to 12MiB graphic assets. It has a
finite latency and throughput which cannot satisfy the Video systems if it were to work
on a per-pixel request/response.

Solving these problems of timing and latency well is what made the CPS-1 stand out.
It is inarguably the ”secret sauce” of the system.

Architecture of the CPS-1 Graphic System

85



2.8. GRAPHIC SYSTEM CHAPTER 2. HARDWARE

2.8.1 CPS-A and CPS-B: The ASICs powerhouse

To build their rendering pipeline, Capcom did not rely on another company’s product.
They crafted their own Application-Specific Integrated Circuit (ASIC), tailored to their
needs, the CPS-A (the brain) and CPS-B (the legs).

2.8.2 Pens and Inks

The elementary unit of work is a 4-bit value which is an index into a 16 colors palette.
Everything, from backgrounds to sprites uses these 4-bit nibble indexes. A good anal-
ogy, and the terminology used in this book, is to picture the GFX manipulating ”pens”
(palette indexes). The color to appear on the screen is decided not by the pen but by
the value at this index, which is called ”ink”.

This division makes the GFX system unaware of the color that will appear to players
on the CRT since it only manipulates pens.

Groups of four bytes encoding 8 pens are ”tile lines”. When combined vertically, they
make a ”tile”, the elementary unit manipulated by background and sprite layers.

Trivia: Pen value 0xF is always treated as transparent!

2.8.3 Elements of drawing

Games are made of backgrounds on top of which are drawn sprites. The easiest to
implement are the background circuits. They are studied first, followed by the sprite
circuits.

86



CHAPTER 2. HARDWARE 2.8. GRAPHIC SYSTEM

2.8.4 Drawing background

A background is described in terms of ”tiles”, whose arrangement is described in a
map. The goal of the circuit is to ”rasterize” the map of tiles (called ”tilemap”).

A naive design would work at the same speed as the video system (8MHz). For each
pixel (every 125ns) the GFXRAM would be read to know what tile to display. Then a
pen would be retrieved from the GFXROM. Finally that pen would be sent to the palette
system where the color would be converted by the video DAC.

CPS-A die. Notice the real estate dedicated to GFXRAM caching

87



2.8. GRAPHIC SYSTEM CHAPTER 2. HARDWARE

Even thought the machine uses the fastest type of memory (SRAM), its response time
does not permit enough roundtrips. This problem is solved via caching, streaming,
channeling, and an humongous (for the time) 32-bit GFXROM/CPS-B local data bus.

Caching

The CPS-A only accesses the GFXRAM during the HBLANK interval. To eliminate mem-
ory read operations while a scanline is rasterized, a line’s worth of tilemap is retrieved
and stored in an internal cache of 256 entries. Each entry stores 16-bit tileID + 10-bit
attributes. Notice the two parts on the die storing respectively 10 bits and 16 bits.

Streaming

Pen values are streamed from GFXROM to the CRT without intermediate storage. The
GFXROM data is retrieved eight pens at a time thanks to a 32-bit data bus.

The system works with the GFXROM address lines connected to the CPS-A (with inter-
mediate PAL decoding). The data lines are connected to the CPS-B where pen values
are selected/discarded before being sent to the video system.

Channels

To further improve response time, the GFXROM data uses a layout where 8 consecutive
bytes are interleaved 16 bits at a time across four chips.

88



CHAPTER 2. HARDWARE 2.8. GRAPHIC SYSTEM

Upon reading, an address is issued to two chips at the same time, but their data lines
are enabled consecutively. Channeling avoids one ”fetch time” every two reads.

2.8.5 CPS1 Tilemaps

The CPS-1 features three tilemap layers named SCROLL1, SCROLL2, and SCROLL3.
They all rely on tilemaps made of 64x64 tiles.

Street Fighter 2
89



2.8. GRAPHIC SYSTEM CHAPTER 2. HARDWARE

SCROLL1 uses tiles of dimensions 8x8 resulting in a total dimension of 512x512.
SCROLL2 uses tiles of dimensions 16x16 resulting in a total dimension of 1024x1024.
SCROLL3 uses tiles of dimensions 32x32 resulting in a total dimension of 2018x2048.

Each tilemap has a maximum capacity of 32 palettes (called a palette page) which any
tile can use freely. SCROLLS can be offset (”scrolled”, hence their name) by any X or Y
value, appear in any order, and be used for any purpose.

In Street Fighter 2, three scrolls are used to improve parallax. The GUI elements are
rendered alongside the sprites on a fourth layer called ”OBJ” which is studied later.

Other titles such as the shoot’em up Forgotten Worlds required all the sprites the ma-
chine could provide for the gameplay. To avoid wasting any of them, the GUI is drawn
on SCROLL1 instead of OBJ. The trade-off is that GUI elements are aligned on a 8-pixel
grid which is a minor inconvenience.

Color codes used in this section are SCROLL1, SCROLL2, SCROLL3, OBJ.

Street Fighter 2 layers
90



CHAPTER 2. HARDWARE 2.8. GRAPHIC SYSTEM

Starfields

Besides SCROLLs, the CPS-1 has two ”STARfield” layers which are always behind the
SCROLLs and always in order STAR1 then STAR2. Like the other layers, one full page
of 32 palettes is available to each of them.

To render the stars, the GFXROM contains no tiles but instead bytecode dictating the
position of points as well as palette cycling timing.

It is surprising nowadays to see so much silicon dedicated to a ”niche” feature, but the
extreme popularity of shoot em ups like R-Type, Gradius, or Darius at the time made
a good case for it. Designing a system saving both considerable GFXROM space and
artists’ time was a good idea at the time. Ironically, the platform ended up receiving no
space shooter!

That did not prevent the feature from being used, though. Long after STARfields came
out of fashion, the system was re-purposed.

Forgotten Worlds. Notice the GUI elements grid alignment (SCROLL1)
91



2.8. GRAPHIC SYSTEM CHAPTER 2. HARDWARE

Noir Black

When designers needed a full black background, instead of using a SCROLL and re-
peating requesting rows of black tiles to cover the whole screen, they only had to use
a STARfield and request no stars.

This is the unacknowledged poetry of the Street Fighter Hyper Fighting intro sequence.
As the title appears, the black background is in fact a pitch black night sky which no-
body ever knew about.

Trivia: The layer system does not use a painter algorithm where pixels are written
over and over in a framebuffer. The CPS-B receives a stream of all layers’ pens
which are selected based on the layer priority and transparency value ( 0xF ). Once
selected, the pen value is forwarded directly to the video system.

Layers color codes, SCROLL1, SCROLL2, SCROLL3, STAR1, STAR2, OBJ.

Forgotten Worlds
92



CHAPTER 2. HARDWARE 2.8. GRAPHIC SYSTEM

Draw order and Priority mask

The drawing order (also called ”priority”) of SCROLLs and the sprite layer are entirely
configurable (excluding the STARs which must remain behind). Any order can be re-
quested but there is an extra feature available to the SCROLL drawn just behind the
sprite layer.

Take the example of Final Fight. After fighting their way to a busy subway, Haggar and
Guy find themselves exiting the train station to continue happily brawling in a desolated
part of the city.

As they are going up the stairs, observe the ”back to front” order the following layers.

- SCROLL3 used for the skyline.
- SCROLL2 used for the main playground.
- OBJ for the main characters, tires, and barrel sprites.
- On top of everything, SCROLL1 for the GUI.

Final Fight
93



2.8. GRAPHIC SYSTEM CHAPTER 2. HARDWARE

It all makes sense except for one detail. If we look closely at Haggar (for those who
never played Final Fight, Haggar is the bigger one of the two) something is off since it
appears to be both in front and behind SCROLL2.

The CPS-B allows the SCROLL layer behind the OBJs to tag each of its tiles with a
single priority group ID (from a choice of four groups). In each of these groups, sixteen
bits indicate which pen in the tile palette have precedence over OBJ.

This is how Final Fight characters are sandwiched by SCROLL2. The tiles making the
”near” portion of the ramp are tagged to use two priority mask groups. The ”wood” tile
use the group mask 0 to make pens resulting in colors , , , and being given
precedence. Likewise, the garbage tiles are tagged with group 1 to give precedence
to eight pens resulting in colors , , , , , , and .

Once the exit animation is over, all tiles priority groups are cleared to allow free roaming
(except behind the ramp) and brawling over the whole screen without priority concerns.

Refer to the CPS-B API on page 195 for more details about tagging and masking.

Final Fight with SCROLL2 layer grid
94



CHAPTER 2. HARDWARE 2.8. GRAPHIC SYSTEM

Rowscrolling

SCROLL 2 has the ability to horizontally offset rows based on their vertical position.

This capability, commonly known as ”rowscroll”, is implemented via a table of 1024
10-bit integers (one for each line) in GFXRAM.

This is a feature completely hard-coded in the ASICs. Once requested, the m68k is
uninvolved, it has no awareness of HSYNC, only VSYNC is known.

I knew we had raster scrolling so I talked with the programmers and we gave it
a shot. It was effective. However, to this day I have no idea about what’s going
on under the hood!

— Nin

Street Fighter 2, Ryu’s floor is rowscrolled
95



2.8. GRAPHIC SYSTEM CHAPTER 2. HARDWARE

Choosing features

The starfield and rowscroll features are good examples of how difficult it is to design
hardware. Doing it well consists of accurately predicting what will be useful and what
won’t.

While starfields were heavily used in the inaugural title, ”Forgotten Worlds”, and promi-
nently featured in the second one , ”Strider”, rowscrowll on the other hand saw no usage
for nearly two years.

Relegated to implementing flame effects in ”Magic Sword” and hazy backgrounds in
”Carrier Air Wing”, rowscrolling barely appeared for a few seconds of gameplay in the
five titles [15] it was featured in.

Ultimately, the balance of these two features was reversed when rowscroll was used to
implement the notoriously beautiful per-line floor parallax in Street Fighter 2, massively
contributing to the graphic appeal of the game.

Street Fighter 2, Honda’s level is triple rowscrolled
96



CHAPTER 2. HARDWARE 2.8. GRAPHIC SYSTEM

Pushing the limits

Besides priority mask, tiles can be flipped horizontally and/or vertically but there is no
scaling or rotation. Moreover, the CPU has no access to the VRAM which forbids pixel
”plotting”. That did not prevent seemingly impossible effects from being achieved.

In Ghouls ’n Ghosts’ first level, on top of hordes of zombies, a Red Arremer, and unfor-
giving controls, the player must face the weather. Wind picks up and soon after heavy
rains. If you look at the screenshot of the layer below, most layers are used and no rain
should be possible.

- STAR1 used for the dark sky.
- SCROLL3 used for background.
- SCROLL2 used for playground.
- OBJ for the main character, big rain drops, and enemies.
- On top of everything, SCROLL1 for the GUI.

Ghouls ’n Ghosts with GUI
97



2.8. GRAPHIC SYSTEM CHAPTER 2. HARDWARE

To add rainfall, developers leveraged temporal blending on the same layer as the GUI.
Every five frames the GUI is not drawn. Instead a full screen of rain tiles is rendered,
resulting in a convincing effect. Temporal blending is often used to fake translucency.

Plotting pixels

The introduction sequence of the shoot’em up Carrier Air Wing (page 93 and 94) is
even more impressive. As a F-14 Tomcat takes off from its carrier, the jet leaves in its
trail an exhaust that expands vertically one pixel line at a time. The gaze then disperses
with a fizzlefade effect.

It seems like pixels are plotted into a framebuffer but both effects are rendered via
the OBJ layer ( ). Exhaust expansion if done with 16 pre-rendered tileS (each cover-
ing more vertical lines). The fizzlefade is achieved with titles featuring an increasing
density of transparent pens. The fizzle repeating pattern is visible on the fourth color
coded screenshot.

Ghouls ’n Ghosts when rain falls
98



CHAPTER 2. HARDWARE 2.8. GRAPHIC SYSTEM

99



2.8. GRAPHIC SYSTEM CHAPTER 2. HARDWARE

100



CHAPTER 2. HARDWARE 2.8. GRAPHIC SYSTEM

2.8.6 Drawing Sprites

Drawing sprites is more difficult than drawing tilemaps. It involves solving the same
problems of bandwidth and latency, only sprites can appear anywhere on the screen
and are not aligned on a grid.

In order to fully appreciate how Capcom solved this problem, it is worth understanding
how other platforms tackled it.

Hardware sprites

A sprite circuit can be implemented using the same logic as a tilemap. It is a spe-
cial case where the map features a single tile and no horizontal or vertical scrolling is
allowed.

Every HSYNC, the GFXRAM is read to know if a sprite appears on the next scanline. If
it does, the circuit makes sure to intercept tilemap pens to issue sprite pens instead.

It is an approach that comes with two drawbacks. First, it requires one circuit per sprite
which is expensive. Second, the one-to-one complexity makes it impossible to scale
to more than a few units. Nonetheless, this is the solution used by machines such as
the Commodore 64 which advertised their circuitry as ”hardware sprites”.

As limiting as it sounds there is a bit of flexibility thanks to a technique known as multi-
plexing. A C64 has 8 sprite ”units” but that does not mean it can only draw eight sprites
on the whole screen. It only means it can only draw eight sprites on the same scanline.

As the CRT cannon progresses down the screen, a sprite unit used above can be reused
to draw sprites located below. By changing the configuration during HBLANK, many
more than eight sprites can be drawn. This trick was extensively used in games to
reach well over 100 sprites on screen.

Likewise, by using built-in multiplexing, the Commodore Amiga placed an horizontal
limit of 8 pixels for its sprites’ width but allowed unlimited height.

Line buffer

To scale better and increase the number of sprites supported, hardware designers in-
troduced the concept of line buffers.

A line buffer system requires a buffer as wide as a visible line on the CRT. The buffer

101



2.8. GRAPHIC SYSTEM CHAPTER 2. HARDWARE

is populated with pen codes by a Pixel Processing Unit. The number of sprites, scale
and rotation capabilities depends on how much work the PPU is able to do.

The limiting factor is that the line buffer can be written only during HBLANK (16µs)
since it is used the rest of the time to feed the CRT.

Systems like the Super Nintendo use a line buffer with an impressive PPU resulting in
breathtaking fullscreen visual effects involving Mode-7/HDMA. This particularly shone
in games like F-Zero or Pilot Wings.

Double Line buffer

A straight forward way to make a GFX more powerful is to simply give it more time to
do its jobs. The merciless pixel clock cannot be cheated but the pipeline can be made
deeper.

By using two line buffers alternately, the GFX pipeline is made deeper which increases
its latency but also frees itself from rendering only during HBLANK. While a line buffer
is fed to the video, another one is rendered. This allows drawing during one full scanline
(64µs) and a GFX four times more capable than one using a single line buffer.

This choice, made by SNK for its Neo-Geo, allowed gorgeous titles such as ”Metal Slug”
to be build entirely with sprites without using tilemaps.

This technique is so powerful that the entire Neo-Geo rendering pipeline revolves
around its double line buffer system. It needs no tilemap system.

CPS1 Sprite FrameBuffer

Capcom engineers wanted something even more powerful than a double line buffer.
To allow more time than the 64µs granted by a double line buffer, the CPS-1 was built
around a double sprite framebuffer (the same technology as Sega Super Scaler). To
host these framebuffers, the machine uses a dedicated memory called VRAM.

With a double sprite framebuffer, the PPU does not just draw a line in advance but a
whole screen. This technique averages 16% more time per line for the graphic chip
to do its work, and more importantly it allows any number of tiles per line (even the
powerful Neo-Geo has a limit of 96 tiles per line).

The gain is massive but it comes with three drawbacks.

102



CHAPTER 2. HARDWARE 2.8. GRAPHIC SYSTEM

Price tag

First, the price of the machine goes up since it requires much more buffering capacity.
At the resolution of 384*224, 9 bits per pixel are stored (5-bit palette index + 4-bit color
index) requiring 200 KiB of storage for two framebuffers.

Bandwidth requirements

The second impact is on the bus. A massive amount of data is now written and read
to/from the VRAM. It requires so much bandwidth that an especially large data bus
connecting the GFX pipeline and the VRAM must be designed.

De-synchronization

Lastly, there is the problem of tilemap and sprite synchronization. When the m68k
writes a layout in the GFXRAM, the graphic system picks it up but routes background
tiles and sprite tiles to different locations. The tilemap is rasterized directly towards
the video system while the sprite layer is rendered to the VRAM framebuffer where it
will be picked up on the next frame.

Trivia: The sync issue is particularly noticeable in Final Fight level 2. The subway
wagon moves up and down to simulate rail junction bumps, but the handles on the
ceiling and the characters appear to lag behind.

A three-frame sequence is enough to illustrate the issue. On frame 1, the scrolls of
frame 1 are displayed. No sprites are visible at that point.

Frame 1

Next, the scrolls of frame 2 are displayed along with the spritebuffer from frame 1.

103



2.8. GRAPHIC SYSTEM CHAPTER 2. HARDWARE

Frame 2

Finally, the scrolls of frame 3 are displayed along with the spritebuffer from frame 2.
The desyncing can only be compensated in software by drawing OBJs one frame ahead
of SCROLLs.

Frame 3

CPS1 Sprites Tile

With its architecture based on a double sprite framebuffer, Capcom built a powerful
system able to move an immense volume of sprites. But performance was only one
part of the equation. They also had to come up with a flexible way for artists to use it.

Up to that point, frustration arose from sprite dimensions (all sprites had to have the
same sizes), shapes (mandatory rectangular), and colors (one palette per sprite).

The CPS-1 lifted these three limitations by abandoning the concept of sprites. The CPS-
1 does have a ”sprite” layer but it is made of tiles of dimensions 16x16 pixels. Called
OBJ (for OBJects) its TILEs can be arranged however an artist requires to build sprites
of arbitrary shapes and sizes.

Like the other layers, OBJ palette page features 32 units which any tile can freely use.

104



CHAPTER 2. HARDWARE 2.8. GRAPHIC SYSTEM

Street Fighter II demonstrates the power of the tile system. Combining them creates
a universe of rich characters with specific shapes, giving them more personality.

Chunli guard pose, 25 tiles (3,200 bytes). Zangief standing, 34 tiles (4,352 bytes).

Ryu victory pose, 29 tiles (3,712 bytes). Sagat Tiger Punch pose, 30 tiles (3,840 bytes).

105



2.8. GRAPHIC SYSTEM CHAPTER 2. HARDWARE

The ultimate boss in ”The Punisher”, Kingpin, is a mountain of a man made of 69 tiles,
which covers half the screen. This impressive feat came with minimal ”wasted” pixels
thanks to the usage of composed tiles.

Tiles in the OBJ layer have attributes allowing them to be rendered horizontally and/or
vertically flipped. However these is still not support for rotation or scaling.

When Final Fight’s mini-boss, Damned, does a back-flip in level 1, no rotation is per-
formed. Two sets of tiles are used and X/Y flipped to generate two extra mirrored
sets. The effect works with four poses, thanks to fast movements and players’ brain
interpolation.

106



CHAPTER 2. HARDWARE 2.8. GRAPHIC SYSTEM

2.8.7 OBJ Limitations

The sprite system has a hard limit of 256 tiles per frame. This is not an arbitrary number
since the constraint is dictated by how many tiles the system is able to read from the
GFXROM and write to the VRAM during a full CRT raster scan (16.7ms).

Because OBJ tiles are the most versatile (they can be placed independently and any-
where on the screen), it was tempting to use them often.

Street Fighter II designers pushed the machine to the edge of its limits by using OBJ
tiles not only for opponents, arena decoration, GUI, but also to embellish the back-
ground parallax effect. This led to problems when a sequel was in the making.

When Ken faces Ryu in Japan, nearly 200 tiles are used. If two of the biggest contes-
tants, Honda and Zangief, were to face each other on this stage, the CPS-1 would be
unable to render all OBJ tiles necessary. Such configuration was impossible in ”Street
Fighter 2” but became a feature of ”Street Fighter 2: Champion Edition”, which allowed
mirror opponents to face each other in any location.

107



2.8. GRAPHIC SYSTEM CHAPTER 2. HARDWARE

We carefully planned SF2 so that the biggest character and the second biggest
character could just barely fit on screen at the same time.

But when mirror matches became possible in Champion Edition, that meant
that we had to be able to display two copies of the biggest character on screen.

We ended up having to remove background elements and such.

— Nin

To remain within the OBJ budget, the ”wind, forest, fire, mountain” (”風林火山”) sign
was removed. All other breakables (Ken’s barrel, Guile’s crate, and Dictator’s statues)
were allowed to remain.

Trivia: Decorations in Street Fighter 2 were the object of much consideration. The
stone on the ground in Sagat’s stage randomly moves at the beginning of each round
so it cannot be used as a landmark by players.

108



CHAPTER 2. HARDWARE 2.8. GRAPHIC SYSTEM

Going too far

Games were tested to ensure the OBJ budget was not exceed but Final Fight last level
(Bay Area) managed to ship with that very problem. When the heroes encounter an
unprecedented level of opposition, the list of sprites is as follows [27].

• Haggar and Cody.

• Two standing barrels and two rolling barrels.

• Three Axl (grey heavy) (two flying backward).

• Three Slash (copper heavy) (two temporarily KOed).

• One Bred (grey minion) and one Dug (red minion).

• Dirt raised by the rolling barrels.

This scene has 258 tiles on the OBJ layer. Final Fight engine is smart enough to not
render partial sprites. Since Haggar, the last sprite on the list, pushes the total 2 tiles
past the maximum, all it tiles are dropped.

109



2.8. GRAPHIC SYSTEM CHAPTER 2. HARDWARE

110



CHAPTER 2. HARDWARE 2.8. GRAPHIC SYSTEM

111



2.8. GRAPHIC SYSTEM CHAPTER 2. HARDWARE

The lack of OBJ scaling and rotation was a problem for developers of Street Fighter 2
as the intro needed precisely these two operations.

To fake it, two logos are used, a small one made of 33 tiles and a large one made of 112
tiles. Tiles move on a circular pattern revolving around the center of the shape. The
small to large substitution happens at the end of the first revolution.

Once again, Capcom banked on fast movement, brain interpolation, and maybe for-
giveness due to a damn good game.

112



CHAPTER 2. HARDWARE 2.8. GRAPHIC SYSTEM

The World Warrier

The OBJ system was used in a creative way by Akiman to solve a show-stopper bug
when he was working as a planner for Street Fighter 2.

Just three days before the deadline, I discovered something horrible.

I had made a mistake with the subtitle “World Warrior”, mis-spelling it “World
Warrier.”

— Akiman

The subtitle was drawn with the OBJ layer, using 16 draw calls pointing to tileID 0x0 ,
0x1 , 0x2 , 0x3 , 0x4 , 0x5 , 0x6 , 0x7 , 0x8 , 0x9 , 0xA , 0xB , 0xC , 0xD , 0xE , 0xE .

Looking inside the GFXROM, one can find the 16 tiles making the ”World Warrier”.

The 16 OBJ tiles making the title, with a typo

It was several months after all the sprite work had been done. Since the logo
had already been created, I couldn’t just go in and change the letter at this point.

— Akiman

What Akiman describe is that the GFXROM and all the tiles in it had been finalized.
However they could still make modification to the 68000 instructions and most impor-
tantly, the palettes that were stored along with it.

”Maybe I can just force it to look like an ‘o’,” I thought. I tried layering various
other sprites over it until finally, it looked like an ‘o’.

Phew!

— Akiman

113



2.8. GRAPHIC SYSTEM CHAPTER 2. HARDWARE

A recreation of the problem

How in the wORld, do you make an ’e’ looks like an ’o’? It turns out that Akiman was
lucky in the mistake he had made since the letters he needed, ’o’ and ’r’, can be found
in the word ”World”.

Akiman leveraged what was available and changed the 68000 draw calls to drop the
three last tiles and instead draw again tiles 0x6 and 0x7 at the end.

It only partially solved the problem since the split ’W’ looked like an ’l’ which made the
title read ”The World Warrlor”.

”The World Warrlor”. A little bit better

The problem was displaced from turning an ’e’ into an ’o’, to turning an ’l’ into and ’i’.
That would have been simple if the CPU could have written in the VRAM but as we have

114



CHAPTER 2. HARDWARE 2.8. GRAPHIC SYSTEM

seen these chips are not mapped in the m68k address space.

There is an expensive way to fake pixel plotting. The idea is to find a tile almost fully
transparent ( 0xF ) but with only a single pen value set in it.

Akiman found just that in one of Guile’s poses. His calf met these criteria with a simple
pen value in its lower left.

Guile’s calf saves the day

Using Guile’s calf as a pencil, but with the title’s palette, three tiles are drawn over the
’l’ to split it into an ’i’.

Guile palette.

Title palette.

In an troubling coincidence, the pen corresponding colors were a match.

115



2.8. GRAPHIC SYSTEM CHAPTER 2. HARDWARE

18 draws calls. Three more than necessary but with proper spelling.

Once you see it, you can’t unsee it

2.8.8 Putting it all together

We now have enough knowledge to fully understand how the CPS-A and CPS-B coop-
erate to render graphics.

The two graphics chips closely work together by sharing custody of the GFX ROM and
VRAM.

The CPS-A generates four interleaved stream of pens (OBJ, SCR1, SR2, and SRC3) by
driving the address bus. The CPS-B receives the data and decides for each ”pixel”
which stream is visible.

116



CHAPTER 2. HARDWARE 2.8. GRAPHIC SYSTEM

CPS-A (address) and CPS-B (data) GFX ROM/VRAM lines

Besides deciding source and destination of data, the CPS-A also generates LI: (Line
increment) and FI: (Frame increment) towards the CPS-B where they are turned into
HSYNC and VSYNC for the CRT.

The 23-bit address line to the GFX ROM is special. It is not a raw address but a layerID
+ tileID within that layer. The PAL STF29 converts IDs into addresses.

The CPS-B is put under heavy contribution. It must simultaneously write the next sprite
framebuffer but also render the current by reading the previous sprite framebuffer and
sampling all five other layers.

To keep up with bandwidth requirements, the VRAM and GFX ROM systems are specif-
ically crafted with wide data lines.

117



2.8. GRAPHIC SYSTEM CHAPTER 2. HARDWARE

VRAM

The VRAM system is physically split via two independent blocks, A and B, to facilitate
sprite buffer double buffering. This component also benefits from an exceptionally
powerful chip compared to the rest of the machine.

A quick glance at the HM53461P shows the usual +5V , GND , CLK , and address/data
pins. However SD0 , SD1 , SD2 , and SD3 indicate this chip does more than the ones
we have seen so far.

Able to store 65,536 Ki x 4-bit, the HM53461P is peculiar because it not only features a
RAM port ( D1-D4 ), it also features a SAM ”serial” port ( SD1-SD4 ).

The RAM port is accessed ”normally” by first asserting the address lines along with
the control lines and then reading or writing on the data lines.

The SAM port is different. Upon asserting the address lines, an internal buffer is
latched. Each subsequent control operation automatically increments the address
counter.

This design would allow RAM and SAM to be accessed simultaneously but this never
happens. When A is read, B is written and the other way around. The real value is
in the access time. If the RAM port’s 100ms is a ”normal” figure, the SAM port read
operations complete more than twice as fast, taking only 40ms.

This is a perfect component for a system that needs to write a few values at varying
locations (like when the CPS-B renders a sprite buffer) but read a very large amount
sequentially (like when the CPS-B must compose pens towards the palette system).

On the Street Fighter II board, twelve HM53461P are combined into six pairs, resulting
in 384 KiB. Four chips are used for a single line so 96 KiB is never used.

118



CHAPTER 2. HARDWARE 2.8. GRAPHIC SYSTEM

GFX ROM

To keep up with the much higher storage requirements, the GFX ROM system is not
designed like the others.

While other chips on the board-B are 27C010 and 27C512 , the GFXROM is made of
MB834200B (256 Ki x 16-bit). This type of ROM has a much higher capacity but also a
slower access time (150ns).

It is likely the dual-channel architecture is the result of a combined desire to use inex-
pensive components to keep the price down while maintaining high performance.

On the Street Fighter II board, twelve MB834200B-15 are combined for a total of 6 MiB
of GFX assets.

119



2.9. COPY PROTECTION SYSTEM CHAPTER 2. HARDWARE

2.9 Copy protection system

Upon release, Capcom CEO Kenzo Tsujimoto was confident the CPS-1 would signifi-
cantly reduce piracy, even going as far as labeling it ”impossible to copy”.

The new CP System arcade boards are very important to Capcom in two re-
gards. First, they have much more memory than our previous hardware. Game
developers will have free reign to explore new, exciting design ideas and take
advantage of the latest technological developments. The CP System has upped
the level of our developers already.

The second big thing is copy protection. Illegal bootlegs have been a huge prob-
lem for us overseas; I believe the CP System is the only PCB hardware today
that cannot be copied. The boards contain various copy protection methods,
and their advanced hardware should make it difficult for bootleggers seeking
to create knockoffs with today’s components.

Bootlegs don’t only hurt us; they’re also a nuisance for our customers who think
they are getting a genuine board. We see copy protection as one of the main
achievements of the CP System.

— Kenzo Tsujimoto, Capcom CEO [26]

120



CHAPTER 2. HARDWARE 2.9. COPY PROTECTION SYSTEM

There were good reasons to be optimistic. Engineers had crammed the platform with
protections to prevent two types of piracy.

Hardware piracy means selling physical copies of PCBs (called bootlegs). By dumping
the ROMs’ content from a legitimate board and buying the same off-the-shelf compo-
nents, pirates sold the same game for cheaper.

The CPS-1’s answer was to use custom components that would not be readily available
for purchase, thus preventing counterfeiters from replicating a PCB. Capcom had Ricoh
exclusively fabricate the two custom ASICs, the CPS-A, and CPS-B. To protect against
decapping and reverse-engineering, metal grids were layered on top of the ASICs [32].

Software piracy involved operators purchasing an authentic game to get the PCBs but
then copying ROMs to get newer games for free.

Capcom’s response was a two-way verification. The hardware could be actively used
by the software to check the board’s authenticity, backed by ”passive” mechanisms
that allowed the hardware to check the software behavior.

Capcom’s disclaimer when a CPS-1 game boots

121



2.9. COPY PROTECTION SYSTEM CHAPTER 2. HARDWARE

2.9.1 The ever changing CPS-B

The heart of the protection system is the CPS-B. The core idea is to make it behave
differently depending on the game it is supposed to run.

To this effect, twenty-five versions the CPS-B exist [15], sometimes differing between
revision of the same game [40].

Game Name Revision CPS-B Year
Forgotten Worlds CPS-B-01 1988
Lost Worlds CPS-B-01 1988
Ghouls’n Ghosts CPS-B-01 1988
Strider CPS-B-01 1989
Dynasty Wars CPS-B-02 1989
Willow CPS-B-03 1989
U.N Squadron CPS-B-11 1989
Final Fight Original CPS-B-04 1989
Final Fight 900112 CPS-B-01 1989
Final Fight 900424 CPS-B-03 1989
Final Fight 900613 CPS-B-05 1989
1941: Counter Attack CPS-B-05 1990
Mercs CPS-B-12 1990
Mega Twins CPS-B-14 1990
Magic Sword CPS-B-13 1990
Carrier Air Wing CPS-B-16 1990
Nemo CPS-B-15 1990
Street Fighter II: The World Warrior Original CPS-B-11 1991
Street Fighter II: The World Warrior 910204 CPS-B-17 1991
Street Fighter II: The World Warrior 910318 CPS-B-05 1991
Street Fighter II: The World Warrior 910228 CPS-B-18 1991
Street Fighter II: The World Warrior 910411 CPS-B-15 1991

A selection of the many Capcom CPS-1 game revisions

In the early days of the CP-System, the CPS-B chips changed frequently. The table
above only contains a few of the many PCB revisions. There is a correlation between
the number of revisions and how successful a game was. Street Fighter 2 was revised
34 times, while Final Fight received 13 ”refreshes”.

With the released of ”Three Wonders”, Capcom stopped changing the CPS-B in favor
of a better protection system. All CPS-B ASICs onward were CPS-B v21.

122



CHAPTER 2. HARDWARE 2.9. COPY PROTECTION SYSTEM

Game Name CPS-B Year
Three Wonders CPS-B-21 1991
The King of Dragons CPS-B-21 1991
Captain Commando CPS-B-21 1991
Knights of the Round CPS-B-21 1991
Street Fighter II: Champion Edition CPS-B-21 1992
Adventure Quiz: Capcom World 2 CPS-B-21 1992
Varth: Operation Thunderstorm CPS-B-21 1992
Quiz & Dragons: Capcom Quiz Game CPS-B-21 1992
Street Fighter II’ Turbo: Hyper Fighting CPS-B-21 1992
Ken Sei Mogura: Street Fighter II CPS-B-21 1993
Pnickies CPS-B-21 1993
Quiz Tonosama no Yabo 2 CPS-B-21 1995
Pang! 3 CPS-B-21 1995
Mega Man the Power Battle CPS-B-21 1995

After 1991, all CPS-1 games used CPS-B v21

2.9.2 ID check

The simplest copy protection available is the chip ID check. By polling a register, the
m68k prompts the CPS-B to return its version number. A version match lets the code
know if its belongs to the right PCB and resets the CPU if it doesn’t.

To make instructions patching of the 68000 ROMs more difficult, calls to verify the chip
ID are placed in several locations in the code. Motivated programmers tried anyway [46]!

2.9.3 Multiplication check

Starting with CPS-B v21, a slightly more robust feature gave the CPS-B the ability to
perform multiplications. Two registers are written and a third can be read. The 68000
code checks that the returned multiplication result is the expected value.

2.9.4 Moving registers

The CPS-B registers move between revisions. The offset and range does not change,
but the offset of each register inside that mapping is different. Accessing the scroll
control, scroll priority, and palette upload registers is done slightly differently for each
game.

123



2.9. COPY PROTECTION SYSTEM CHAPTER 2. HARDWARE

Additionally, the meaning of each bit field inside each register is altered between ver-
sions.

2.9.5 Unexpected behavior detection

Protections described so far involved active software and passive hardware. The hard-
ware can also actively monitor the software by leveraging the moving register policy.
If the CPS-B detects incoherent values written to the wrong registers, it sets and locks
all palettes of all layers to black.

The game still runs in the background and the audio is played but the screen doesn’t
display anything. The only way to recover is to reboot the machine [29]... only for the
screen to turn black again.

2.9.6 Invalid offset detection

Each game uses a different amount of assets for each of its SCROLL and OBJ layers.
On the ”B” board, PAL chips such as the STF29 discussed earlier are hard-coded with
knowledge of the amount of GFX ROM attributed to each layers.

Tile references pointing beyond a range are ignored resulting in rendering ”holes” if a
game ROMs are inserted in a non-matching ”B” board.

All graphics are stored together in the same ROMs.

But the hardware knows which part of the ROM space is 8x8 tiles, 16x16 tiles,
16x16 spites, 32x32 tiles, and all games tested only draw tiles if their code falls
in the valid range.

If a tile is out of range, it is replaced by transparent pixels.

— Mame cps-1 video driver

Trivia: Pull-up resistors on the board along the GFX ROM data lines detect if a pen
value matches a tileID.

If no data is detected, 0xF is automatically ”inserted”, resulting in a transparent
value.

124



CHAPTER 2. HARDWARE 2.9. COPY PROTECTION SYSTEM

2.9.7 Configuration Key

Up to 1991, the behavior of a CPS-B was hard-coded in its silicon at the factory level.
There was no way to alter or re-purpose them after they shipped.

It was not only expensive to have to revise the hardware circuits for each game, it was
also a logistic difficulty to provision enough chips for a success and not be stuck with
inventory on an unappreciated game. To solve this issue, Capcom revisted the CPS-B
chip one last time and made it configurable via software.

The whole behavior is encoded in a small internal 18 byte area using not ROM but RAM.
To keep these bytes alive, the CPS-B v21 must be supplied with current at all time [29].

The configuration RAM was designed to survive when the cabinet was turned off
thanks to a battery located on the soldering side of Board C and connected to the
CPS-B. The chip was even designed to survive having no battery for a few minutes to
allow battery replacement.

Trivia: These batteries worked remarkably well since, thirty years later, one can find
boards in working condition still using their original battery.

Suicide batteries

The infamous ”suicide” nickname came from the effect of losing power. A CPS-B v21
without power lose its configuration and resets all its registers to ”default” values that
none of the games use. Capcom offered a battery replacement service to resurrect
boards ”C” which had committed seppuku but eventually discontinued it.

As the reader will have guessed, passionate fans found a way to bring these games
back to life.

Phoenixing

The first method is called ”phoenix”-ing. It is a tedious process which consists of
dumping a game ROM and patching the m68k instructions to replace CPS-B registers
accesses to use the ”default values” [47].

People phoenixing CPS-1 board have such intimate knowledge of the CP-System that
they even changed the game to display a ”Phoenix Edition” splash upon startup.

125



2.10. EPILOGUE CHAPTER 2. HARDWARE

A phoenixed game boot splash screen

De-suiciding

Eventually, passionate people figured out the process of accessing and writing the
CPS-B RAM. Boards can be brought back to life by re-uploading the proper configura-
tion bytes which essentially de-suicides them [33].

2.10 Epilogue

From 1988 to 1995, Capcom used the CPS-1 to release more than thirty titles. These
seven years saw the birth of three of Capcom’s most loved franchises: Ghouls’n
Ghosts, Final Fight, and Street Fighter 2.

To Capcom, the CPS-1 was a gamble that paid off hundredfold, allowing them to be-
come a video game household name.

126



CHAPTER 2. HARDWARE 2.10. EPILOGUE

To players, the games were a series of beautifully crafted titles which both provided
entertainment and emptied their pockets. The experience was so memorable that pas-
sionate people wrote emulators and even (in some extreme cases of obsession) books
to keep these memories alive.

To counterfeiters, the CP-System was a problem. Capcom games were popular and
generated a substantial amount of money. It is likely greed set in even more so once
demand skyrocketed with the advent of AAA titles such as Street Fighter II.

Capcom engineers had designed security measures able to discourage attackers with
a reasonable amount of determination. Perhaps the one flaw the CPS-1 can be faulted
with is that it did not provision for the unprecedented level of popularity it enjoyed.

The money in the balance armed the counterfeiters with an unreasonable amount of
tenacity. As players lined up to spend time and beat Street Fighter 2, so did the pirates
to defeat the copy-protection systems. Eventually they were able to figure it out.

Of all the security measures, it would have been fair to assume the custom ASICs would
be an impenetrable fortress. Astonishingly, CPS-A and CPS-B replicas were manufac-
tured under the name ”COMCO” [30]. It is unknown if an insider leaked the schematics or
if someone made it their life mission to reverse-engineer these chips to make it happen
but it did.

As cracks appeared in its shield, Capcom did not give up on protecting its tiles. As it
had proved itself able to evolve and compete in the business of producing games, it
embraced the challenge of embarking on an encryption crusade against bootlegers.

2.10.1 CPS-1.5 Kabuki

In 1992, Capcom released the CP System Dash (a.k.a CPS-1.5). Fully encased in a
gray plastic box, it introduced a fourth satellite ”Qboard” PCB to handle playback of
positional three-dimensional Qsound audio. Five games were produced until late 1993.

Game Name GFX Year
Cadillacs and Dinosaurs 4 MiB 1992
Warriors of Fate 4 MiB 1992
The Punisher 4 MiB 1993
Saturday Night Slam Masters 6 MiB 1993
Muscle Bomber Duo: Ultimate Team Battle 6 MiB 1993

Capcom CPS-1.5 based arcades games

127



2.10. EPILOGUE CHAPTER 2. HARDWARE

The CPS 1.5 is noteworthy for its improved copy-protection. Audio instructions are
stored encrypted in the ROM. The audio CPU is a special z80 dubbed Kabuki [31] able
to decrypt instructions on the fly.

The encryption scheme is symmetric. A secret key is used to encrypt the ROM when it
is built, and the same secret key must be used to decrypt it at runtime.

The key is not burned in the z80’s silicon but, like the CPS-B v21 configuration, stored
in an internal RAM. To keep that key alive, the unused pin 28 we saw on page 52 is
re-purposed from ”DRAM refresh” to providing power. Like the CPS-B and its RAM con-
figuration, the z80 requires power at all times which means the system was provided
with a second ”suicide battery”.

Trivia: The protection provided by Kabuki held remarkably well over the years. It was
only broken in the early 2000s [17].

2.10.2 CPS-2

With significantly improved capabilities thanks to its increased ROM capacity and
higher processor clocks, the CPS-2 instantly became a smash-hit, in particular thanks
to the Street Fighter Alpha series.

From 1993 to 2003, forty-two games were published. The first one was the wildly suc-
cessful ”Super Street Fighter II” while the last one ”Hyper Street Fighter II: The Anniver-
sary Edition” paid homage to a series that defined the platform.

In terms of copy-protection, Capcom once again cranked up security. The platform
featured not only the Kabuki audio instruction encryption scheme, but it also gained
encrypted game logic.

Thanks to a custom CPU, ABI compatible with the 68000, instructions are stored en-
crypted in ROM and decrypted on the fly. Like Kabuki, the scheme uses a shared secret
key stored in yet another battery-powered RAM (the third one).

The only part of the CPS-2 that still stored plain instructions was the OKI ROM contain-
ing audio samples. The GFXROM data was not encrypted but its content was obfus-
cated via shuffling.

Trivia: No bootleg of CPS-2 titles were ever produced. Its protection system was
remarkably strong and held for nearly 10 years. It was only when the ”CPS-2 Shock
Group” attacked it in 2003 [36] that its functioning was reverse engineered.

128



Software concepts

Nothing tells you more about a system than the process of actually building software
for it.

The rest of this book describes a full game production pipeline. The goal is to deepen
the understanding of Capcom’s platform by not only writing code and generating as-
sets but also learning how to process them in order to generate ROMs.

This chapter describes the high-level architecture. It is intentionally light on details
since those are provided in subsequent chapters.

The pipeline we will describe ingests the source code ( .s / .c ) written by program-
mers, the samples ( .wav ) and musics ( .vgm ) from the musicians, and the graphics
assets ( .png ) produced by the artists. The outputs are four sets of ROMs ready to be
burned on EPROMs.

Game ROM dependency graph

129



3.1. CCPS: THE CPS-1 BUILD SYSTEM CHAPTER 3. SOFTWARE CONCEPTS

Some dependencies in the graph are simple to the extreme. The z80 source code ( .c
and .s ) only impacts the z80 ROM. Likewise, the m68k code (also .c and .s ) ends
up in the 68000 ROM.

Other dependencies are more convoluted. The .wav sample files for example need
to be compressed to ADPCM before being added to the OKI ROM. To be referencable
at runtime, each sample is given an integer ID. These IDs must be collected into a .h

header and this file must be compiled along with the rest of the 68000 code.

Likewise, the .png files containing artwork are transformed to indexed format before
making their way to the GFX ROM. They also require generating a .h header file, this
time containing tileID. Additionally, a .c file containing each tile palette is generated
in order to be compiled into the 68000 ROM.

An even more complicated graph emerges from the music .vgm files. The music track
contains YM2151 commands that must be transformed in bytecode, stored in a .c file,
and compiled along with the z80 code. To be referenced, a header file containing music
ID must also be generated and compiled with the 68000 ROM. Music is also embel-
lished with audio samples which must also be compressed to ADPCM and added to
the OKI ROM.

To complicate things even further, each of the four ROM mentioned must use different
WORD size and interleaving across the chips containing it.

3.1 CCPS: The CPS-1 Build System

As this book was being written, several tools were authored to validate the understand-
ing of the hardware.

Ultimately these tools were combined into a build system called ccps . The rest of this
book occasionally refers to ccps but tries to keep the abstraction level high so readers
can build their own build system if they desire.

Even if only to check what obscure compiler flags must be used, it is freely available,
open source, and a few command lines away. It also welcomes pull request :P !

$ git clone git@github.com:fabiensanglard/ccps.git

$ cd ccps

$ ./ makeAndBuild.sh

$ ccps ...

130



CHAPTER 3. SOFTWARE CONCEPTS 3.2. PROGRAMMING LANGUAGE

3.2 Programming Language

For all their CPS-1 titles, Capcom developers used z80/m68k assembly. They did not
have much choice since high-level languages did not allow variable placement and
humans were better at hand optimizing instructions. Additionally, ROM space was
precious and controlling the volume of instructions with accuracy was paramount.

Even with improvements in modern compiler capabilities, output compactness, and
optimization performances, a developer willing to take a CPS-1 to the next level will
undoubtedly use assembly.

Since the goal of this book is to explains how things works, it uses C for its greater
readability and wider knowledge base among programmers. A little bit of assembly is
used but only to bootstrap the CPUs.

3.3 CPUs Bootstrapping

Without libraries, frameworks, dynamic linker, syscalls, virtual memory, a loader, or
even an operating system, CP-System games run on the bare metal.

Bootstrapping involves simple things like setting the stack pointer and the instruction
pointer of a CPU. But it also involves harder tasks like setting up interrupts and more
importantly preparing the program to run before calling its main function.

An innocent six line C program offers a glimpse into what is involved.

char a;

char b = 0;

const int c = 1;

const char d = "bar";

char e = 5;

int f(){...}

After compilation and linking, this program will result into a binary blob of raw instruc-
tions (no container like ELF or PE) prog.rom . Burned on a ROM, is is mapped some-
where in the CPU address space depending on the mapping established for the z80
and m68k.

During the linking stage, all the variables and functions are given an address in either
ROM or RAM.

131



3.3. CPUS BOOTSTRAPPING CHAPTER 3. SOFTWARE CONCEPTS

CPU Memory address space, ROM and RAM

Read-only

Instructions for f go in section .text at offset 0. Since the linker knows both where
the ROM will be mapped and the section offest in the ROM, it can inline calls to
.text + 0 . This means 0x0000 for both the z80 and the m68k.

Const values c and d are read only so they go in ROM as well. These are grouped
in section .rodata apart from .text . Access to these two symbols are respectively
inlined with values .rodata + 0 and .rodata + 1 .

Read-Write

Symbol a is interesting because it is readable but also writable. The linker will have
assigned a RAM address (starting at 0xD000 on z80 and 0xFF0000 on m68k). Since
it is uninitialized, it will point to whatever is in the RAM when it started.

Like a , b is readable and writable but it is initialized to value 0 . The linker can make
a point to RAM and even group zero-initialized variables together in .bss but setting
the value to 0 cannot be done. This is something the bootstrap will have to do.

Finally we come to variable e . Since it is writable, the linker will have used the next
available address in RAM after a . But how can the linker initialize that location to value
5 since it can only write to file pro.rom which is not mapped there?

The answer is that it cannot. That task, called ”copy-down”, is another thing the boot-
strap will have to take care of.

Since they involve low-level operations, both bootstraps for z80 and the m68k are writ-
ten using assembly and bundled in a file named crt0.s .

132



CHAPTER 3. SOFTWARE CONCEPTS 3.4. SYSTEMS COMMUNICATION

3.4 Systems communication

There are many chips in the machine that need to talk to each other. In the hierarchy
we studied in the first chapter, each line is an interface.

That is a total of eight communication lines, but the dotted ones on the drawing are
not programmable, lowering the task to understanding five APIs.

3.4.1 m68k → CPSA and m68k → CPS-B

Communication occurs over the CPS-A and CPS-B registers. Additional draw com-
mands are written by the 68000 to the GFXRAM where they are read by the CPS-A. All
access to GFXRAM is arbitrated by the m68k bus protocol.

3.4.2 z80 → YM2151

Communication occurs over the YM2151 registers which are mapped on the z80 bus.
This access is arbitrated by the z80 bus protocol.

3.4.3 z80 → MSM6295

Communication occurs over the MSM6295 registers which are mapped on the z80
bus. This access are arbitrated by the z80 bus protocol.

133



3.4. SYSTEMS COMMUNICATION CHAPTER 3. SOFTWARE CONCEPTS

3.4.4 m68k → z80

Communication between these two CPUs is not trivial. They both have their own bus
protocol, run at different speeds, have different address spaces, and data widths.

Try to think of a design yourself with the following constraints. There are two 1 byte
latches. On one side is a m68k running at 10MHz which can write in them but not read.
On the other end is a z80, working at 3.579 MHz which can read but not write them.

How can you make these two CPUs talk to each other reliably, making sure the stream
of commands features no duplicates and no drops?

3.4.5 Interrupts

Both the z80 and the m68k have interrupt systems. These are used to solve many
problems and in particular the issue of communicating over the latches.

Since the reader (z80) runs slower than the writer (m68k) it is possible for a latch value
to be overwritten (write twice) before it is read.

Inverting the ratio is done precisely via interrupts. The m68k’s IPL1 line is directly con-
nected to the VSYNC line of the video system. Likewise, the z80 INT line is connected
to the timer (CT1) line of the YM2151.

z80 interrupt system

This configuration lets the writer tick every 16ms while the reader ticks every 4ms. This

134



CHAPTER 3. SOFTWARE CONCEPTS 3.4. SYSTEMS COMMUNICATION

ensures no latch value can be dropped but introduces the problem of duplicate reads.

To avoid these, the z80 commits to disregard a latch content if its content did not
change since the last time it was checked.

m68k interrupt system

This introduces an ultimate problem. It is not possible for the m68k CPU to send the
same byte twice in a row. To work around this, the writer commits on never writing the
same byte twice which is done via a no-op byte (0xFF) written after every byte.

3.4.6 Back in the days

The system and conventions we just described allows for reliable date exchange but
it does not give a semantic to the values in the latches.

A developer is free to give any meaning to the latches since they controls both the writer
and the reader. Maybe you can even take a second to think how you would design this
interface if you had to before we study how Capcom did it.

In a game like Street Fighter II, developers took the approach of not giving values an
”immediate” meaning. Communication is a stream of bytes which must be recon-
structed on the receiving end before being interpreted.

When interrupted, the z80 reads the byte in latch 1 and appends it into a circular buffer.

135



3.4. SYSTEMS COMMUNICATION CHAPTER 3. SOFTWARE CONCEPTS

Interpretation happens in the ”main” thread. A byte value FE means that the next byte
is the ID of a music that should start playback.

Otherwise the value is a sound ID to be played immediately on the OKI. This scheme
wastes a single byte value to overhead. It allows for 256 music IDs and 254 samples
IDs.

Street Fighter comm model. Stream encoding via 0xFF

Notice how the encoder, on the m68k side, injects 0xFF no-op bytes after each write
to the latch and how the decoder ignores them.

What about the other latch? Street Fighter II only ever uses the first one. The other one
is left unused.

No sound driver can rule them all

Given the capabilities of the communication system described above, it would be fair
to assume all Capcom games used it. That would be wrong.

The ”sound driver” kept on evolving, sometimes changing drastically even between two
games made consecutively by the same team.

In Final Fight, a sound ID received for playback is directly forwarded to the OKI. In Street
Fighter II, a translation table is used. The ID received is an index into an array containing
the actual OKI ID along with the channel and volume to use.

The merits of a translation table may be explained by the size of Capcom team and the
inability to do a ”full build” easily at the time.

If the sound team had to change the OKI layout, all IDS used by the m68k would be
invalid. With a translation table, the sound team was able to make any change they
wanted and keep their sound and music IDs backward compatible.

136



CHAPTER 3. SOFTWARE CONCEPTS 3.5. TRACKING WALL-TIME

3.4.7 Our sound driver

The sound driver described in the next pages uses the same architecture as Capcom.
It relies on interrupts on both sides. Besides being used for the latch communication,
the interrupts also maintain a counter to pace the main threads.

The communication protocol however is not streamed. Whereas it is more powerful,
it is also much more complicated. For simplicity, a byte is immediately interpreted
without the need to rebuild a stream.

The byte space is divided in two. If the MSB is set to one ( 0x80 ) it is a request for sound
effect playback and if the MSB is set to zero 0x00 it indicates a music playback.

This leaves ”only” 126 sound values and 127 music values but is more than enough for
the intended purpose. Volume is hard-coded and round-robin rotation is used to pick
between channels 1 or 2 to serve a request.

3.5 Tracking wall-time

The wall-time is the time experienced by players. Both CPUs must be able to measure
it. The m68k must do so in order to sample inputs and run the game engine at the
intended speed. The z80 is under the same constraint for the music where it must
keep track of pauses and note duration.

Modern systems have Real Time Clock (RTC) chips to do this but the CP-System is

137



3.6. RANDOMNESS CHAPTER 3. SOFTWARE CONCEPTS

devoid of it. The solution is to leverage the counters which are incremented each time
the main thread is interrupted. Depending on the CPU these accumulators will have
different granularity.

The m68k tracks time in units of 16ms while the z80 can do the same in increments of
4ms.

3.6 Randomness

Pseudo-random series of numbers can be achieved using Maximum-Length LFSRs
(Linear Feedback Shift Register). On the m68k, a 32-bit registers will give 4,194,304
different values before repeating itself. On the z80, the 8-bit register will only provide
256 values.

The only tricky part is to pick a seed to initialize the register. Street Fighter 2 uses the
frame counter while other titles read the content of the CPU register during bootstrap.
The latter method does not work well when working with emulators (they usually ini-
tialize their registers to zero) and should be avoided.

3.7 Banking system

This part applies only to the z80 which uses an infamous banking system. The con-
straint is to make sure the window mapped at [ 0xB000- 0xBFFF ] is slid to ”see” the
proper part of the ROM.

This is done via the Bank Switch control register mapped at 0xF004 . The value written
is multiplied by 0x4000 which gives the starting offset (in ROM space) of the sliding
window. Writing 0 makes 0xB000 in z80 space map to 0x0000 in ROM space, writ-
ing 0x0001 makes 0xB000 in z80 space map to 0x4000 in ROM space , and writing
0x0002 makes 0xB000 in z80 space map to 0xB000 in ROM space .

This adjustment must be performed before accessing any address falling within the
banking interval.

138



GFX System

Since the graphic pipeline of the CPS-1 is hard-coded in the silicon of the CPS-A and
CPS-B, there is no code to write and nothing to compile.

The GFX System components

It sounds simple but there is more at hand than converting graphic assets to GFXROM
format. Even though all types of assets use the same pixel format, observant readers
will have noticed that palettes are not stored in GFXROM. Special care must be taken
to save them and provide them to the m68k later, along with a way to reference them.

The other constraints to consider are the ”hard-coded regions” of the GFXROM where
OBJ, STAR1, STAR2, SCR1, SCR2, and SCR3 assets must reside. If a tile is not where it
should, a draw command is simply ignored.

All board use a different layout. The Street Fighter II board and its STF29 PAL slice the
6MiB GFXROM in four areas (OBJ, SCR1, SCR2, and SCR3) .

A boards running Final Fight uses a S224B PAL which carves the space in the same

139



4.1. TILE FORMAT CHAPTER 4. GFX SYSTEM

four area types but with different offset and proportions over a smaller 2MiB space.

The PAL found on Forgotten Worlds’ board, the LW621 , is more complex as it divides
the GFXROM in five areas to also include interleaved STAR1 and STAR2 bytecode.

4.1 Tile format

All tiles are stored continuously in memory, using groups of four bytes encoding eight
pens. Rows of pens are stored one after another. The dimension of a tile varies de-
pending on the layers. OBJ and SCR2 use the same 16x16 tiles which mean their tiles
are 16*16 / 2 = 128 bytes. For the fine tuned SCR1, which uses 8x8, each tile uses 32
bytes. Finally the larger SCR3 uses 512 bytes for each of its 32x32 tiles.

4.2 GFX Layout

The EPROMs are organized in groups of four chips and serialized. On a board like
Street Fighter II, we find three groups of four. Inside each group, chips are interleaved
every WORD (two bytes).

4.3 Channels

The channels mentioned earlier are now visible. ROM 01 and ROM 02 are paired on
channel 1 to provide 32-bit data. Likewise, ROM 03 and 04 are paired on channel 2.
The same division is applied to the rest of the ROMs with the same principle.

140



CHAPTER 4. GFX SYSTEM 4.3. CHANNELS

The Street Fighter II board build generates twelve ROMs. Each group stores 2 MiB.
Group [1-4] starts at 0x000000, group [10-13] at 0x200000, and ROMs [20-23] at
0x400000. Each chip goes in the matching numbered DIP slot (see page 39).

141



4.4. BACK IN THE DAYS CHAPTER 4. GFX SYSTEM

4.4 Back in the days

The artwork was the part of a game that required the most people. On a big title such
as Street Fighter II, that task kept busy twenty artists out of a team of forty.

Producing tilemap (background) assets for the SCROLL layers was junior artists’ re-
sponsibility. It required little supervision since the artwork had to be rectangular and
the visual importance was not the highest.

Producing assets for the OBJ layer, on the other hand, was much more elaborate. Four
step were involved: outline drawing, allocation, detailed drawing, and finally dotting.

4.4.1 Pen and Papers

The artistic direction was established by the planner of the game. Their goal was to
produce concept art and pose outlines in order to capture the essence of a character,
as well as establishing proportions and movements. After that, senior artists took over
for fine tuning.

When I joined on Street Fighter II, Akiman had already done the rough drafts.

There were four of us as character leads - Satoru Yamashita , Yoshiaki Ohji, and
Ikuo Nakayama in addition to myself. Satoru was the most skilled, so he would
take Ryu and Ken.

One day, Akiman brought us the rough sketches of a pro wrestler, sumo wrestler,
and a beast, and said ”decide who does what.” To be fair, we played paper-rock-
scissors to determine!

— Eri Nakamura [22]

Even though it was not the norm, it could happen that the planner took care of every
aspect of a character (especially if the topic was dear to their heart).

I created all Chun-Li’s graphics in just 1 month.

— Akiman [42]

142



CHAPTER 4. GFX SYSTEM 4.4. BACK IN THE DAYS

However, ”Chun-Li” stories seem to have been rare occurrences. In the case of Final
Fight, Satoru Yamashita animated Guy and Haggar but Akiman drew the key anima-
tions for both of them.

Final Fight Guy sprite outlines by Akiman

4.4.2 Non-square grid paper

To draw both outlines and detailed versions of the sprites, artists used a special paper
with a double grid system.

There was a ”light” grid which used non-square proportions to match the CP-system
video aspect ratio of 10:7. Artists were able to draw normally without having to worry
about distortion since rectangle elements would match the CPS-1’s stretched pixels.

The paper featured a second ”darker” grid which grouped elements 16 by 16 to match
the OBJ tile dimension. This was an essential feature for the allocation step.

143



4.4. BACK IN THE DAYS CHAPTER 4. GFX SYSTEM

4.4.3 OBJ allocation

If breaking free of the rectangular sprites was a blessing for the artists, it was a problem
for Capcom project managers. In an era where ROM chips were very expensive, a game
was allocated a ROM budget at its beginning which it could not be exceeded.

Before the CPS-1, remaining within the budget was a simple matter of a division. The
number of sprites allowed to the art team was ROM size / rectangular sprite size. But
the free form factor introduced a tracking problem.

Dhalsim reconstructed sheet

144



CHAPTER 4. GFX SYSTEM 4.4. BACK IN THE DAYS

The solution to the allocation problem came with paper and scissors.

In order to make the best use of the capacity we had, we wrote the ROM’s ca-
pacity on a board, and cut and paste the pixel characters on the board. If there
was space left on the board, then there was open capacity in the ROM. So, from
there we started filling in the spaces, like a puzzle.

We saved making the ending for last, and by the time we got there we were all
out of capacity. We were wondering what to do, when we found a board that
had gone missing under a desk.

We called it the ”Mirac-ulous Memory.”

— Nin [22]

Dhalsim released paper sheet
145



4.4. BACK IN THE DAYS CHAPTER 4. GFX SYSTEM

Only two of these sheets have ever been released, one mostly featuring Dhalsim [21] and
another one called the ”Ryu sheet” [52]. Thanks to the imprint left in the GFXROM and
the knowledge of the pixel format/layout, all other spreadsheets can be reconstructed.

For a game like Street Fighter II, a budget of 6MiB GFX was approved. With 4.6 MiB
dedicated to sprites, 144 OBJ sheets were printed. That was a lot at the time and only
warranted because the team had managed to score a huge hit with Final Fight on a
tiny 2MiB budget [42].

Ryu reconstructed sheet

146



CHAPTER 4. GFX SYSTEM 4.4. BACK IN THE DAYS

Comparing the released material with what actually shipped is the source of many
discoveries and hypotheses.

The Dhalsim sheet sits at offset 0x3300 in the GFXROM. It is a near perfect match
with the paper version except for the portion starting at 0x60 . One of the poses was
dropped in favor of the Chun-Li animation ”Hundred Rending Legs” which would indi-
cate it was a later addition.

Ryu released paper sheet

Ryu’s sheet 0x4500 allows us to guess even more about the production process. Large
coherent sprites show that at the beginning of the production process multiple sheets
were allocated on a per-character basis. Tiles were layed out and kept together as
much as possible to facilitate visual inspection.

As the project progressed, the team scraped the bottom of the barrel and started to
allocate space on a per-tile basis. They sometimes spread a character pose across
multiple sheets, like in Dhalsim’s sheet where portions of Blanka can be found.

147



4.4. BACK IN THE DAYS CHAPTER 4. GFX SYSTEM

4.4.4 The sheet system

Besides sparsely describing it, Capcom employees never elaborated on the sheet sys-
tem. For which title and for how long it was used in total are questions that were never
answered.

Thanks to an understanding of the GFXROM format, it is possible to peek back in time.
The digital structure is an imprint of what the paper sheet looked like. These recon-
structed sheets can provide answers.

A Street Fighter II Champion Edition sheet

148



CHAPTER 4. GFX SYSTEM 4.4. BACK IN THE DAYS

Examining the GFXROM structure of all games published on CPS-1 uniformly reveals
tiles grouped to match actual drawings, which implies usage of paper and scissors.

The GFXROM layout started to change with the first title using the CPS-2. In Super
Street Fighter II, the sheets of the twelve legacy contestants are the same as the ones
used in Street Fighter II Champion Edition. However, new character sheets look like
they were created with an automated allocator which sliced sprites vertically.

Inspection of subsequent games’ GFXROM indicate that all games released on CPS-2
used an automated OBJ allocator.

Super Street Fighter II sheet (new character Cammy)

149



4.4. BACK IN THE DAYS CHAPTER 4. GFX SYSTEM

150



CHAPTER 4. GFX SYSTEM 4.4. BACK IN THE DAYS

4.4.5 Digitizing art

To digitize their drawings, Capcom employees used SMC-70 computers. Manufac-
tured by Sony, the SMC-70 hit both the US and Japan market in the end of 1982. What
is particularly noteworthy about this machine is that it is built around extensibility.

The main element of a SMC-70 features its keyboard along with the core parts such
as the z80 running at 4MHz, 64KiB RAM, and 64 KiB of VRAM. The rest is entirely
configurable via daisy chained extenders.

The only limit to the chain system is the capacity of the power supply, which must be
located at the very back of the chain.

This architecture allowed Sony’s machine capabilities to range from simple office work
to a powerful video editing tool in its most extensive chaining configuration.

A SMC-70 extended with a SMI-7012. Power supply at the very back

Sony, the big iron

On one hand, the substantial list of extensions and peripherals, totaling nearly 40
pieces all made by Sony, is a testament to the company’s commitment. One the other

151



4.4. BACK IN THE DAYS CHAPTER 4. GFX SYSTEM

hand, it also embodies a desire to remain in control of the platform by keeping other
manufacturers from contributing to the eco-system.

Extension Name Peripheral Name Function
SMI-7011 3.5” floppy drive bay (internal with 1 drive)
SMI-7012 3.5” floppy drive bay (internal with 2 drives)
SMI-7013 3.5” floppy drive bay (external with 1 drive)
SMI-7014 3.5” floppy drive bay (external with 2 drives)
SMI-7016 Floppy Disk Control Unit

SMI-7020 Dot Matrix Printer
SMI-7031 RS232C Serial Interface
SMI-7032 IEEE-488 Interface Unit
SMI-7050 Cache Disk Unit
SMI-7056 Supercharger: 5MHz i8086 w/ 256 KiB RAM.

SMI-7060 10-Key Numeric Key Pad
SMI-7070 Video Signal Converter
SMI-7073 RGB Superimposer
SMI-7074 NTSC Superimposer
SMI-7075 Videotizer
SMI-7080 Battery Back-up Unit

SMC-70 extensions and peripherals [61]

Noteworthy capabilities

The SMC-70 is notable for being the first computer to allow a 3.5” floppy reader (also
invented by Sony in 1981) and its ability to display kanji characters via a ROM extension.

However, it is really when it comes to graphic capabilities that the machine stood out.
Four resolutions were available, ranging from low-resolution 320x200 using sixteen
colors up to high-resolution 640x200 in two colors.

The 16 colors mode was particularly interesting to Capcom artists since it was a per-
fect match to the CPS-1 pen system.

4.4.6 Tiny Character Editor

The SMC-70 had no ability to use a scanner. The digitization process was entirely
achieved by hand. To help them in their task, artists used a tool called TCE (Tiny Char-
acter Editor). Although no screenshot ever emerged, Capcom employees gave a rough
description of its minimalist approach.

152



CHAPTER 4. GFX SYSTEM 4.4. BACK IN THE DAYS

You had a 16 pixel grid, a 16-color palette, and that was it.

— Koichi Yotsui (Strider planner)

4.4.7 Dotting

For both SCROLL and OBJ elements, dotting was done on a tile basis. The artist’s task
was to look at their detailed graph paper drawing and decide, for each rectangular
element in the tile, which color of the palette to use for it.

Pixel-art was a tedious and repetitive process which required a sense of aesthetic cre-
ativity to deal with the cases where a line crossed a pixel. Drop the pixel, include it
plain, or attempt to anti-alias with a color in the palette were difficult choices to make.

No mouse was available. Out of the box options were either a keyboard or a keypad.
Some employees, satisfied with neither, built themselves a custom joystick.

A SMC-70 with a keypad. A likely doter setup
153



4.4. BACK IN THE DAYS CHAPTER 4. GFX SYSTEM

At the very least, employees were free to use what was the most effective to them.

I used a keyboard to draw all the graphics for Vampire and Street Fighter 2.

— Akiman [11]

As everything was in hexadecimal we used the 0-F keys and the arrows to make
the sprites.

There was this one guy who made a complete racket mashing away on his key-
board. He used to do overtime and didn’t even sleep, so we’d all have no choice
but to stay awake and keep working as well.

— Akiman [24]

4.4.8 Saving tiles

Artists attempted to reuse tiles as much as possible to reduce usage of the scarce
ROM space available. In Street Fighter 2, there was only enough GFXROM for eleven
challengers. Ken is a patchwork and a palette swap on top of Ryu tiles base. It ”weighs”
only 98,304 bytes. A remarkable achievement compared to characters such as Zangief
(622,592 bytes), Honda (491,520 bytes), or Ryu (442, 368 bytes).

Made with 2MiB GFXROM, Final Fight is even more impressive with 21 enemies and 6
bosses. The minions are made of seven bases, diversified with patches and palettes.

154



CHAPTER 4. GFX SYSTEM 4.4. BACK IN THE DAYS

G. Oriber, Bill Bull, and Wong Who from Final Fight

Everyone on the development thought Final Fight was going to be allocated with
a large memory capacity, but we were wrong. That’s why the final boss Belger
hops around like that: we didn’t have enough memory to add more graphics for
a walking pattern.

However, making something cool with limited resources is like a puzzle to me,
so I thought it was fun.

— Nin [62]

155



4.4. BACK IN THE DAYS CHAPTER 4. GFX SYSTEM

Ryu/Ken sheet

Ryu and Ken use the same seven first colors of their palette to facilitate the patching
process.

156



CHAPTER 4. GFX SYSTEM 4.4. BACK IN THE DAYS

Sagat’s sheet

Sagat’s laughing animation is double optimized. The sequence is made of two poses
where only the bust is replaced while the legs remain the same. Moreover, the left leg
is missing. It is reconstructed at runtime using an horizontal mirror of the right leg
found at 0xB9 .

Trivia: The capacity of the ASICs to flip tiles horizontally was used extensively in
Street Fighter II when challengers faced left or right. Not really an issue for sym-
metrical characters, except for Sagat’s eye patch switches sides when he turns.

157



4.4. BACK IN THE DAYS CHAPTER 4. GFX SYSTEM

4.4.9 Team structure and Culture

The art team had a strong hierarchy based on skills and seniority.

Planners at the top.
Senior artists get to work on sprites.
Junior artists work on backgrounds.

— Akiman [53]

The structure was flat with no involvement of intermediate managers. Out of the twenty
people doing artwork on Street Fighter II, all of them reported to a single person, Aki-
man [43].

As layered as they where, operations where not set in stone and employees could climb
the ladder quickly. Akiman was hired on ”Dyn Side Arms” in 1986 as a SCROLL artist,
the bottom of the artist ladder. Two years later, he was a Planner on Forgotten Worlds
and went on to work on Final Fight and Street Fighter 2 in the same capacity.

Work Ethic

A strong working culture was established from the very top.

We had vacation days, but Yoshiki Okamoto (Capcom development leader)
would get mad if you took the day off. A lot of people got yelled at by him for
that, ”Hey, why weren’t you here on Sunday?!”

I don’t think anyone can beat my record for “percentage of time lived at Cap-
com.” During game developments, I always slept under my desk.

I had a whole futon laid out and everything! When things were really busy,
Yoshiki Okamoto would be setting new deadlines every 10 hours, so I couldn’t
leave my computer. . . that’s how I acquired the habit of sleeping under my desk.

By the way, even now that I’m freelance, I still sleep under my computer desk at
home.

— Akiman [53]

158



CHAPTER 4. GFX SYSTEM 4.4. BACK IN THE DAYS

Poaching

Retaining talent was a top priority. The credit screen of Street Fighter II illustrates
Capcom’s cautiousness. Artists were only credited by their nicknames.

Street Fighter II credit screen does not use actual names for fear of poaching

Trivia: The most recognition available was a specialty next to a nickname. Some
”credit screens” like in ”Dynasty Wars” feature OBJ artists and SCR artists.

Despite its precautions, Capcom lost numerous employees over the years. Among
them was Takashi Nishiyama who made Street Fighter 1 and then went on to direct
Fatal Fury, The King Of Fighters for Capcom’s arch-rival, SNK [54].

4.4.10 Inspiration

For Street Fighter II, artists’ inspiration came from various outlets.

159



4.5. SHAPES AND SPRITES CHAPTER 4. GFX SYSTEM

Mangas such as ”Yasunori Katō” helped to give birth to Dictator while Tao from ”Har-
magedon: Genma Wars” was part of the genesis of Chun-Li.

Boxer, Ryu, Ken, Sagat, and Zangief were inspired by real life athletes, respectively Mike
Tyson, Mas Oyama, Joe Lewis, Sagat Petchyindee, and Victor Zangiev Zhanghief.

Trivia: Originally called M. Byson, the boxer was renamed to ”Balrog” for the US
release, out of lawsuit concerns from the American heavy-weight boxing champion.

For the backgrounds, Hollywood and VHS cassettes came to the rescue.

I remember stitching together a few movies to make a presentation. ”Streets
of Fire” and Charles Bronson’s ”Hard Times” were the ones I used back then.
Basically movies about fighting.

I really took the chairman’s words to heart – ”Use movies!” he said, so I took
that to mean we should just openly plagiarize them!

— Akiman [21]

Employees did not get paid to watch one movie. They got paid to watch three!

We didn’t have a whole lot of time, so we had a 3-monitor set-up where we could
watch other movies at the same time.

We did as the president told us: - ”Watch them all and learn from them!”.

— NiN [21]

Trivia: Coincidentally, the Japanese title of ”Hard Times” was ”The Street Fighter”.

4.5 Shapes and Sprites

This historical detour was important in order to understand the sheet system. With
this knowledge we can review the last GFX ROM requirements involving OBJs.

On this layer, tiles can be used either directly or in groups which mandate distinct layout
in GFXROM.

160



CHAPTER 4. GFX SYSTEM 4.5. SHAPES AND SPRITES

Ken stage inspiration

Ken stage sketch [55]

Ken stage as seen in the game
161



4.5. SHAPES AND SPRITES CHAPTER 4. GFX SYSTEM

4.5.1 Sprite

A sprite is a collection of tiles with rectangular boundaries. As we will see in the m68k
programming section it can be rendered by issuing a single draw call mentioning the
offset in the sheet, the width in tiles and the height in tiles.

Honda has a Sprite

While it is convenient to be able to use a single command and the best way to render
a set of mostly opaque tiles, it is inefficient. A set of tiles where many are transparent
not only wastes precious storage space in the GFXROM, it also counts against the
CPS-A/CPS-B limit of 256 tiles per frame.

Another limitation (or advantage depending on how you look at it) is that a single
palette is specified when placing the sprite draw command so all tiles must use it.

4.5.2 Shape

A much more efficient and flexible method is to use a Shape where tile layout can be
arbitrary. It takes several draw calls to draw (tiles have to be specified one by one) but
they can be located anywhere in a GFXROM.

Shapes have the triple advantage of saving storage space, narrowing down tile count

162



CHAPTER 4. GFX SYSTEM 4.5. SHAPES AND SPRITES

during rendition to the minimum, and allowing per tile palettes. The example of Honda
shows that only 41 tiles are required as a Shape. It would have taken 60 tiles if a Sprite
had been used.

Trivia: In Street Fighter II, artists limited themselves to one palette per character
because the OBJ layer was used for multiple things such as decoration and GUI.
This was purely a design decision. They could have as well gone with 16 palettes
per character since they are drawn with Shape instead of Sprite commands.

Honda as a Shape

To allow sprite draw calls, the build system must allocate images depending on the
intended usage. All tiles in a sprite must be placed as they appeared in the original
image.

The look of Capcom sheets is deceiving. Tiles in the OBJ layers are arranged in a
visual coherent fashion which could lead one to assume they are rendered as Sprites.
However this was only done to keep track of allocations, most Capcom games render
OBJs as Shapes. Modern tools do not have this problem.

On page 158 is a Honda sheet featuring the same artwork twice. It is featured first as a
Sprite, at 0x00 where it appears like a rectangle. It appears a second time as a Shape.
Thanks to the automatic allocator in ccps , tiles are placed as they were encountered
when reading the asset. It looks like mashed potatoes but uses less space.

163



4.5. SHAPES AND SPRITES CHAPTER 4. GFX SYSTEM

A sheet, generated with ccps , with a Sprite Honda and a Shape Honda

164



Sound System

Making ROMs for the sound system is a little bit more complicated than for the GFX
system.

Not only are samples and music assets processed, there is also a need to compile
code to bootstrap and then run the z80. This program is commonly called a ”Sound
Driver”.

The Sound System components

The assets and the driver must be packed into two ROMs, one called ”z80 ROM” and
another called ”OKI ROM”. This asymmetry where three systems result in two ROMs
is further complicated by the dependency graph that looks like a plate of spaghetti.

The difficult part is that both sound effects and music contribute to the OKI ROM con-
tent which must be populated in two steps.

165



CHAPTER 5. SOUND SYSTEM

166



CHAPTER 5. SOUND SYSTEM 5.1. PROCESSING SOUND SAMPLES

The structure of the OKI ROM facilitates the task since it features an index at the be-
ginning which references all payloads. Leveraging it allows a first pass where audio
samples are ingested by the build system to generate an incomplete OKI ROM. In a
second pass, the music tracks are processed so new samples are added to the index
ROM and the payload appended.

At the very top, ccps sfx expects artists to provide sound samples contained in .wav

files, a format which is universally supported by audio tools. This stage generates a
partial OKI ROM and a .h header file to be injected in the control build graph so the
m68k can request sample playback with a simple ID.

The second stage involves ccps mus , the music processor. It expects .vgm (Video
Game Music) from which are extracted raw YM2151 instructions. It outputs the final
OKI ROM with the sample used by the soundtrack and also a .c file including bytecode
containing YM2151 register values, timing, and OKI sample timing.

The last stage relies on the Small Device C Compiler (SDCC) toolchain. All artifacts
generated in the previous stages are used along with the inputs for the sound driver
( .c files) and the bootstrap crt0.s assembled by sdasz80 assembler. In this step,
all resulting relocatable object files .rel are linked together via ssdc’s linker sdldz80 .

5.1 Processing Sound Samples

A wav file is a simple container with a header describing the content followed by a
payload. Once the sampling frequency, bits per sample, and number of channels is
retrieved, the PCM can be accessed.

5.1.1 Constraint

Artists should not produce stereo wavs since the CPS-1 is mono. Moreover, game
developers should decide if they wish to use the OKI in high quality (7575Hz) or low
quality (6060Hz) and all assets should use that sampling rate. Finally, since ADPCM
compressed 12-bit sample to 4-bit samples, artists should provide 16-bit wavs.

5.1.2 ADPCM Compression

Decompression is done in hardware by the OKI at runtime but the build system still has
to compress assets appropriately.

167



5.1. PROCESSING SOUND SAMPLES CHAPTER 5. SOUND SYSTEM

ADPCM encodes the difference between the previous sample and the sample to be
generated. Each 16-bit sample is downsampled to 12-bit and compressed to a 4-bit
nibble [48].

int transitionTable [8] = {-1, -1, -1, -1, 2, 4, 6, 8};

int stepSizes [49] = {

16, 17, 19, 21, 23, 25, 28, 31, 34, 37,

41, 45, 50, 55, 60, 66, 73, 80, 88, 97,

107, 118, 130, 143, 157, 173, 190, 209, 230, 253,

279, 307, 337, 371, 408, 449, 494, 544, 598, 658,

724, 796, 876, 963, 1060, 1166, 1282, 1411, 1552};

int stepSizeIndex = 0; // Initial value (0) points to 16

int16_t lastSample = 0;

int8_t compress(int16_t sample) {

int8_t B3, B2 ,B1, B0; // Bit of the output nibble

sample >>=4 // Convert from 16-bit to 12-bit

int16_t diff = lastSample - sample;

if (diff) < 0) B3 = 1 // Set magnitude sign bit

diff = abs(diff);

int16_t ss = stepSizes[stepSizeIndex ];

if (diff >= ss) B2 = 1, diff -= ss; // Set B2

if (diff >= ss/2) B1 = 1, diff -= (ss/2); // Set B1

if (diff >= ss/4) B0 = 1; // Set B0

int8_t nibble = B3 << 3 | B2 << 2 || B1 << 1 | B0;

// Keep track of the value upon decompression

lastSample = decompress(lastSample , nibble , stepSizeIndex );

int8_t transIndex = ss/4 * nibble & 0x1) +

ss/2 * nibble & 0x2) +

ss * nibble & 0x4) ;

stepSizeIndex += transitionTable[transIndex ];

return nibble;

}

Let’s take an example converting a stream of 16-bit PCM to 4-bit ADPCM nibbles.

short pcm[4] = {960, 960, 950, 160};

168



CHAPTER 5. SOUND SYSTEM 5.1. PROCESSING SOUND SAMPLES

Compressing sample 1

The first 16-bit sample has a value of 960 which becomes 60 in 12-bit. With the
current step size at 16, ADPCM can only command a delta of + ( 16 + 16/2 + 16/4)
= +28 which it encodes in a nibble 0b0111 . The step size index is updated via the
transitionTable[ b111 ] = 8. The current step size is 34 .

Compressing sample 2

The second 16-bit sample also has a value of 960 which becomes 60 in 12-bit. Since
the latest sample output was 28, ADPCM must somehow encode a difference of 60-28
= 32. ADPCM commands a delta of + ( 0 + 34/2 + 34/4) = +33 which it encodes in a
nibble 0b0011 .

The decompressor will output 28 (its last value) + 33 = 61. It will slightly overshoot the
desired value but we can see how the step size has adapted to the delta requested
with only two steps.

The step size index is updated via 8 (previous value) -1 (transitionTable[ b011 ]) = 7.
Now the step size is 31 .

Compressing sample 3

The third 16-bit sample has a value of 950 which becomes 56 in 12-bit. Since the latest
sample output was 61, ADPCM encodes a difference of 56-61 = -5. ADPCM commands
a delta of - (0 + 0 + 31/4) = -7 which it encodes in a nibble 0b1001 .

The decompressor will output 61 (its last value) - 5 = 56. The step size index is updated
via 7 (previous value) - 1 (transitionTable[ b001 ]) = 6. Now the step size is 28 .

Compressing sample 4

The last 16-bit sample has a value of 160 which becomes 10 in 12-bit. Since the
latest sample output was 56, ADPCM encodes a difference of 10-56 = -46. ADPCM
commands a delta of - (28 + 28/2 + 0) = -42 which it encodes in a nibble 0b1110 .

The decompressor will output 56 (its last value) - 42 = 14. The step size index is updated
via 6 (previous value) + 6 (transitionTable[ 0b110 ]) = 12. Now the step size is 50 .

169



5.2. STRUCTURE OF THE OKI ROM CHAPTER 5. SOUND SYSTEM

Graphing PCM vs ADPCM shows that the decompressed stream ”lags” behind upon
abrupt changes but catches up aggressively. ADPCM first value is always near zero
(+/-28) but it is not audible to players since most samples start with a fade-in.

5.2 Structure of the OKI ROM

The structure of the OKI is simple. It features a 127 * 6 bytes table at its beginning.
Each entry points to a payload in the ROM. The payload of each entry must be a ADPCM
stream.

For some reason offset 0 in the table index must not be used.

typedef struct {

uint8_t firstOffset [3];

uint8_t unused;

uint8_t lastOffset [3];

uint8_t unused;

} oki_entry;

typedef struct {

uint8_t unused [8]

oki_entry entries [127]

uint8_t payload [0 x3FC00]

}

Notice there is no metadata to indicate the bitrate. The ”database” entry is a plain offset
directly pointing to ADPCM nibbles. It is up to the build system to carry out this info to

170



CHAPTER 5. SOUND SYSTEM 5.3. PROCESSING MUSIC

the z80. In practice, Capcom games never mixed bitrate and always used 7575Hz.

OKI ROM layout [60]

5.3 Processing Music

Making music with FM synthesis is an art which this book does not intend to butcher.
The best way to go is to ask the musicians in the team to work with whatever tool they
wish (the amazing DefleMask is highly recommended) and export their symphonies
using VGM file format.

VGM (Video Game Music) is a community effort originating from smspower.org to
create an audio file format able to support many legacy systems (SEGA consoles, MSX,
Neo Geo, and PC) as well as arcade hardware.

The arcade profile is particularly interesting for CPS-1 development since it uses
YM2151 for FM Synthesis and SegaPCM for the samples.

While the YM2151 is obviously a perfect fit that will need no processing, the SegaPCM
needs some adjustments. As a chip used by SEGA in their AM2 (Amusement Machine
2) from 1985 to 1991, it is superior in capabilities to the MSM6295. It relies on 16-bit
PCM, up to 32kHZ sampling, has more channels, and has a larger address space.

The build system can take care of compressing the SegaPCM to ADPCM and resam-
pling from 32KHz to 8080Hz but the musicians should only use two channels for music

171



5.4. PROGRAMMING THE Z80 CHAPTER 5. SOUND SYSTEM

samples in order to play nicely with the CPS-1, where the two other channels are used
to play sound effects.

// List of VGM bytecode converted to miniVGM bytecode.

0x54 | aa dd | Write dd to YM2151 register aa. -> MUSIC_NOTE

0x61 | nn nn | Wait n samples (0 to 1.49 seconds ). -> DELAY

0x62 | | Wait 735 samples (60th of a second) -> DELAY

0x63 | | Wait 882 samples (50th of a second).-> DELAY

0x66 | | End of sound data. -> END_SONG

0xC0 |bbaa dd| Write dd to Sega PCM register aabb. -> MUSIC_SOUND

5.4 Programming the z80

Programming Zilog’s CPU into a sound driver involves doing two things right: boot-
strapping and setup of the memory map. Since the latter is easier, it is discussed first.
To avoid page turning, the requirements are reproduced here.

Start End Size Function
0x0000 0x7FFF 32 KiB ROM (32 KiB out of 64 KiB)
0x8000 0xBFFF 16 KiB Bank-switched view of rest of ROM
0xD000 0xD7FF 2 KiB RAM
0xF000 0xF001 2 B YM2151 registers
0xF002 0xF002 1 B OKI OKI6295 registers
0xF004 0xF004 1 B Bank Switch control ( SOU1 )
0xF006 0xF006 1 B OKI MSM6295 H / L mode
0xF008 0xF008 1 B Sound commands (latch 1)
0xF00A 0xF00A 1 B Sound commands (latch 2)

z80 memory map

Using sdcc helps a lot here since it features an exclusive ”placement” keyword at .

__at(0xF000) char REG_YM2151_ADR;

__at(0xF001) char REG_YM2151_DAT;

__at(0xF002) char REG_OKI;

__at(0xF004) char REG_BANK_SWITCH;

__at(0xF006) char REG_OKY_QUALITY_SWITCH;

__at(0xF008) char REG_LATCH1;

__at(0xF00A) char REG_LATCH2;

172



CHAPTER 5. SOUND SYSTEM 5.4. PROGRAMMING THE Z80

With the registers correctly mapped, what remains is to place .text and .data at
the right locations in ROM. This can easily be done thanks to the awesome sdldz80

linker and its linker script.

-mjwx

-i out/main.ihx

-b _CODE = 0x0200

-b _DATA = 0xd000

-k /usr/share/sdcc/lib/z80

-l z80

out/crt0.rel

out/main.rel

-e

As expected, the DATA is placed at 0xd000 . The CODE however is placed not at
0x0000 but 0x0200 for reasons that will follow soon.

Trivia: Debugging a CPS-1 program can be a tedious task. A good starting point
when encountering an issue is to read the linker .map file which indicates where
each symbol was placed.

5.4.1 Bootstrapping

A z80 starts fetching and executing instructions from address 0x0000 . The bootstrap
code crt0.s (on page 168) is placed accordingly via directive .org 0 . The code im-
mediately jumps to 0x100 in order to skip the interrupt handler instructions.

The z80 can work in interrupt modes 0, 1, or 2. Modes 0 and 2 are the most powerful
and complex but they imply retrieving the ID of the interrupting peripheral by reading
a byte on the data bus. This mechanism allows support of multi-device interruption.
However in this case, it is overkill. The z80 uses Mode 1 which always makes the CPU
jump to 0x38 when interrupted.

At .org 0x100 , the stack pointer sp is set to point at the end of RAM (the z80 stack
grows downward), the first interrupt is requested and a mystery gsinit function is
called. All the code in crt0.s accounts for a few hundred bytes. Which explains why
we requested the linker script to place CODE further at 0x200 .

Trivia: The calling functions from ASM to C require using prefixed symbols.

173



5.4. PROGRAMMING THE Z80 CHAPTER 5. SOUND SYSTEM

.module crt0

.globl _main

.globl _interrupt

.globl _schedInterrupt

.area _HEADER (ABS)

;------------------

; Z-80 starts here!

;------------------

.org 0

jp init

;------------------

; INTERRUPT HANDLER

;------------------

.org 0x38

DI ; Disable Interrupt

call _interrupt ; Process Interrupt

call _schedInterrupt ; Reschedule interrupt

EI ; Enable Interrupt

RET

;--------------

; INIT and MAIN

;--------------

.org 0x100

init:

ld sp ,#0 xd7ff ; Setup stack

IM 1 ; Set Interupt mode 1

call _schedInterrupt ; Request first int

call gsinit ; Init global variables

main:

call _main ; Call C main()

jp main ; Never happens

5.4.2 z80 interrupt

In order to interact with the latches properly but also be able to keep track of wall-time,
the z80 needs to be interrupted regularly. Zilog’s CPU does features a timer RFSH but
it is intended for DRAM refresh (which the sound system does not feature anyway).

Instead the interrupts are triggered by the YM2151, thanks to its two internal timers.

174



CHAPTER 5. SOUND SYSTEM 5.4. PROGRAMMING THE Z80

Timer A is a 10-bit counter while Timer B is an 8-bit counter. For a YM2151 running at
3,579Hz, the trigger formula is 64 * (1024 - value) / 3579.

Setting the Timer A to 800 will result in an interrupt 64 * (1024 - 800) / 3579 = 4ms
later. When the YM2151 counter reaches zero, it asserts a line connected to the z80
INT line which makes the CPU jump to address 0x38 .

void waitYM2151 () {

while (REG_YM2151_DAT == 0x80) {

// Wait until YM2151 is ready for write

}

}

void interrupt () {

// Read latches here

}

void schedInterrupt () { // Schedule an interrupt in 4ms

waitYM2151 ();

REG_YM2151_ADR = 0x10; // Register Timer A 8 MSB

REG_YM2151_DAT = 0xC8; // 0b11001000

waitYM2151 ();

REG_YM2151_ADR = 0x11; // Register Timer A 2 LSB

REG_YM2151_DAT = 0x00; // 0b00

}

5.4.3 Initializing variables

To finish bootstrapping, crt0 makes sure initialized C variable values are set. The
linker placed all values requiring initialization in a GSINIT segment. By wrapping it
with markers INITIALIZER (src) and INITIALIZED (dst), they can be copied easily.

; Ordering of segments for the linker.

.area _HOME

.area _CODE

.area _INITIALIZER

.area _GSINIT

.area _GSFINAL

.area _DATA

.area _INITIALIZED

.area _HEAP

175



5.4. PROGRAMMING THE Z80 CHAPTER 5. SOUND SYSTEM

Copying is done with ldir instruction using the linker macros. Prefix s refers to the
”start” of a segment while prefix l refers to the ”length” of that segment.

.area _GSINIT ; Initialize global variables

gsinit: ; Copy values from ROM > RAM.

ld bc , #l__INITIALIZER

ld a, b

or a, c

jr Z, gsinit_next

ld de , #s__INITIALIZED

ld hl , #s__INITIALIZER

ldir

gsinit_next:

ret

5.4.4 z80 Sound Driver

The sound driver is a simple loop which reads bytecode from our mini-vgm format to
feed music notes, no-op on pauses, and forwards sample playback.

int8_t noopCounter = 0;

void updateMusic () {

if (noopCounter) { // Does the YM2151 need a break?

noopCounter --; // 14ms increment.

return;

}

next_byte_code:

int8_t bc = next ();

switch (bc) { // Use our custom bytecode (miniVGM ).

case DELAY :

noopCounter = bc; break;

case MUSIC_NOTE :

REG_YM2151_ADR = next ();

REG_YM2151_DAT = next ();

goto next_byte_code;

case MUSIC_SOUND :

REG_OKI = 0x8 | next ();

REG_OKI = next ();

goto next_byte_code;

case END_SONG: // End of song

stopMusic (); break;

}

}

176



CHAPTER 5. SOUND SYSTEM 5.4. PROGRAMMING THE Z80

A single latch is used to received commands as ”immediate value”. If bit 0x80 is set,
control is requesting a sound effect to be played, otherwise it is music.

The main uses an ”active” loop in order to never outpace the interrupt function call
frequency. This guarantees it runs in the vicinity of 250Hz.

int8_t intCounter = 0;

int8_t latch;

void interrupt () {

intCounter ++;

latch = REG_LATCH1;

}

// Incremtend by the main() function.

int8_t musCounter = 0;

// Incremented by the interrupt () function.

volatile int8_t lastLatch;

void main () {

while(true) {

musCounter ++;

// Only tick after interrupt ticks

while (musCounter < intCounter) {

}

updateMusic (); // Feed the YM2151 or skip for pause.

if (latch == 0xFF) continue;

if (latch == lastLatch) continue;

lastLatch = latch;

// Forward to OKI

if (latch & 0x80) {

REG_OKI = 0x8 | latch;

// 0x10 = Channel 1, 0x00 = Max volume.

REG_OKI = 0x10 | 0x00; // TODO: Round -robin on channels.

} else {

setupMusicPlayback(latch & 0x70);

}

}

}

177



5.5. BACK IN THE DAYS CHAPTER 5. SOUND SYSTEM

5.5 Back in the days

From its inception, Capcom recognized the crucial importance of sound for a video-
game and set out to hire the very best musicians they could find.

By 1989, they had assembled a pool of talent who called themselves the ”Capcom
Sound Team”.

The Capcom Sound team. L-R: Yoko Shimomura, Yoshihiro Sakaguchi, Manami Mat-
sumae, Masaki Izumiya, Yasuaki Fujita, Mari Yamaguchi, Minae Fujii, Toshio Kajino,
and Isao Abe. Identify of table-man is unknown.

5.5.1 Recruiting

Capcom actively recruited by taking advantage of ’careers days’ to get graduates to
come work for them. Many musicians emerged from music schools located in the
Kansai region encompassing Kyoto, Osaka, and Kobe near Capcom headquarters.

Several alumni of Osaka College of Music ended up working for Capcom, where they
were able to compose music for a living while having the security of working for a large
Japanese company.

178



CHAPTER 5. SOUND SYSTEM 5.5. BACK IN THE DAYS

One of these recruits, Yoko Shimomura, would go on to compose music for games
such as Street Fighter II, Final Fight, and Final Fantasy. She gave numerous interviews
which help to paint a picture of the life of a musician working at Capcom.

I studied piano in college, but I loved the Famicom, and would often stay up all
night playing it.

Then the next day my shoulders would be all stiff, and my piano teacher would
scold me, and my Mom even said “I don’t remember raising a daughter like this.”

I decided that when I graduated, I would go work at a place where I could play
both music and Famicom all day without complaints!

— Yoko Shimomura, Capcom Sound team [45]

Yoko’s account of her hiring interview confirms that Capcom was more interested in
hiring talented musicians than tech savvy people.

I did not know you could write music with a computer until I joined the company.
At the entrance exam, I was asked “what sequencer do you use?” and I had to
ask back ”What? Is that like an electronic controller?”.

They had to teach me from the ground up, and after that it was less musical
practice than it was technical. The first music data I turned in was thoroughly
corrected, and I was feeling really glum.

I was asked to talk about what I knew about FM generation at the entrance
exam. I had no idea what it was, so I thought about AM/FM radio and wrote
down ”it sounds better these days than it used to.”

— Yoko Shimomura, Capcom Sound team [45]

5.5.2 Creative process

Even though musicians were part of a ”Sound Team”, they usually worked alone on a
game.

They could pick projects based on availability [56] but they were assigned to the next
one immediately after they were done with the previous one.

179



5.5. BACK IN THE DAYS CHAPTER 5. SOUND SYSTEM

Being dropped in a project and asked to write music was difficult. It was mostly the
planner’s responsibility to brief the musician on what kind of music they wanted [63].

NiN would come up to me and show me designs of the characters and explain
the personalities of the characters and ask me to make theme songs for each
character.

I would look at the backgrounds and the character descriptions and all that, and
I noticed that each character had a unique background. And because of that,
I suggested making each theme song based on their background country and
culture.

— Yoko Shimomura, Capcom Sound team [43]

The work ethic of the composers had nothing to envy to the artists drawing pixels.

At 11 o’clock, all the security was activated and you could not move between
floors. The elevators stopped moving too. If you had to finish work by 7 o’clock
the next day, we had to pass ROM down from the window on a string.

Once I tied a carrier bag and put the ROM inside and gave it to them. 15 mn
later, the phone rang. They said ”sorry but we broke the pins when we put it in!
Can you give us another?”

— Yoko Shimomura, Capcom Sound team [64]

5.5.3 Tools

Yoshihiro Sakaguchi, author of MegaMan music, explained what computer the musi-
cians connected their Yamaha keyboards to.

180



CHAPTER 5. SOUND SYSTEM 5.5. BACK IN THE DAYS

We worked on both the music and sound effects for Capcom’s games. We’ve
got a centralized recording system setup on a PC-98, so that even if we’re writing
music for different hardware, we can compose without needing to be able to
program.

— Yoshihiro Sakaguchi [44]

NEC PC-9800 series

NEC entered the personal computer market in 1979 with its 8800 series. These ma-
chines, built around 8-bit z80 CPUs would later be known as ”PC-88”.

Thanks to its optional kanji ROM, NEC quickly gained traction The PC-88 accounted for
40% of the Japanese personal market by 1981.

By the mid-80s, the aging series was discontinued in favor of machines based on 16-bit
Intel CPUs such as the i286. The NEC’s next computer, named 9801, was be the first in
the 9800 line. These machines were commonly referred to as ”PC-98”.

181



5.5. BACK IN THE DAYS CHAPTER 5. SOUND SYSTEM

PC-9801, the first in the 9800 series (1984)

Like the PC-88, the PC-98 enjoyed considerable success. Over its lifespan ranging
from 1992 to 2000, NEC sold more than 18 million units. Across multiple lines such as
”Desktop”, ”Hi-end”, or ”Laptop”, NEC released a new machine every year [66].

The success was such that the series accounted for 60% of the Japanese Personal
Computer market by 1991.

What Capcom used

Because so many models were released, it is hard to tell for sure which PC-98 was
used for a particular game. What can be done is to list the models released each year
in order to get a rough idea.

182



CHAPTER 5. SOUND SYSTEM 5.5. BACK IN THE DAYS

A selection of PC-98s from 1985 to 1992

It is likely musicians working on CPS-1 titles were provided with computers from the
Main series. Around that time, it would have been a computer based on a Intel 386
CPU with 50 MiB HDD.

Proprietary technology

Despite their name, NEC’s machine had nothing to do with the IBM PC. Due to its oper-
ating system, MS-DOS, lacking support for Japanese glyphs, Big Blue’s machines never
managed to break into the Japanese market. NEC’s PCs were named after what they
were, Personal Computers.

183



5.5. BACK IN THE DAYS CHAPTER 5. SOUND SYSTEM

C-Bus

The PC-98 uses a proprietary 16-bit C-bus instead of the IBM’s ISA bus. BIOS, I/O port
addressing, memory management and graphics output are also different. This archi-
tecture was both a moat that protected NEC from clone manufacturers (which plagued
IBM in the USA) and a dungeon that prevented its machine from benefiting from the
many peripherals built for IBM PCs.

It was an extra effort for manufactures to create C-bus version of their card but com-
panies such as Roland and Creative did release some of their sound cards for PC-98.

A C-bus Roland MIDI card for PC98II

Video chip

Besides their proprietary bus, PC-98s were noteworthy for their, at the time, powerful
graphic system.

The heart of it was the High-Performance Graphics Display Controller 7220, more com-
monly known as µPD7220. The PC-98 used two of them, both running 2.5MHz. One
handled the 8 KiB VRAM for text while the other acted as a co-processor managing a
96 KiB VRAM framebuffer.

The tandem was one of the first GPUs, presenting primitives to draw lines, circles, arcs,
and character graphics. In its highest resolution mode the PC-98 reached an impres-
sive 640×400 with 8 colors. It allowed Latin alphabetic, numeric and most importantly
katakana characters. An optional ROM board added 3,000 kanji glyphs to the repertory.

The end of PC-98

Although having specs far inferior to the Fujitsu FM Towns and Sharp X68000, NEC
enjoyed tremendous success, selling 18 millions units from 1982 to 1999.

A list accounting for games-only still totals 1,228 titles. Proof of the machine’s status
as a game developers favorite.

184



CHAPTER 5. SOUND SYSTEM 5.5. BACK IN THE DAYS

NEC’s domination only started to wane when DOS/V, a special version of Microsoft’s
MS-DOS supporting Japanese characters, came out at the end of 1990.

185





Control System

The control system is the simplest ROM to build since it involves only compiling code
and the hardest to get right because of the complexity of its dependencies and the
components it needs to communicate with.

The control system components

While the latch toward the Sound system is a small API surface, the GFX API is huge.
The interface to the Graphic System is bigger both in breadth (it features 64 registers)
and depth (the expected GFXRAM data layout is non-trivial).

To our advantage, the Motorola 68000 is a target supported by the GNU Compiler
Collection (GCC). This suite features a much more powerful linker script system than
sdcc which helps considerably to solve the memory mapping requirements.

All stages of the build graph rely on tools provided by GNU GCC. Compiling .c code to
.obj is done via gcc compiler. Assembling .s files to .obj files is taken care of by
as assembler . Finally, the ld linker combines all .obj together into raw instructions.

187



CHAPTER 6. CONTROL SYSTEM

188



CHAPTER 6. CONTROL SYSTEM 6.1. BOOTSTRAPPING THE 68000

At the end of the process, the logical m68k ROM is split into interleaved chip sized
ROMs according to the specifics of the target board (described in the hardware chap-
ter).

Like the z80, bootstrapping is solved with a small assembler program named crt0.s .

6.1 Bootstrapping the 68000

Contrary to a z80, a m68k does not have a set booting address. Instead, it reads an
array of 64 32-bit integers called the ”vector table”. Located at 0x000000 , this is where
the CPU finds the values to initialize its registers such as the stack pointer (offset 0 )
and instruction pointer (offset 1 ).

.extern main

dc.l 0xFFF000 , _boot , Def , Def , Def , Def , Def , Def

dc.l Def , Def , Def , Def , Def , Def , Def , Def

dc.l Def , Def , Def , Def , Def , Def , Def , Def

dc.l Def , Def , VSync , Def , Def , Def , Def , Def

dc.l Def , Def , Def , Def , Def , Def , Def , Def

dc.l Def , Def , Def , Def , Def , Def , Def , Def

dc.l Def , Def , Def , Def , Def , Def , Def , Def

dc.l Def , Def , Def , Def , Def , Def , Def , Def

.align 4

Def:

rte

All other slots except for one (offset 26 ) point to a no-op routine.

6.2 Auto-Interrupt

The 68000 has multiple interrupt modes. In its most complex form, IPL0 , IPL1 , and
IPL2 encode a level of interrupt and the interrupt ID is retrieved via an external interrupt
controller. This would be over-kill for the task at hand.

A simpler mode, auto-vector, makes the CPU jump directly based on the three IPL lines’
state. Three lines are treated as bit giving a value within [0,7] which is used to looked
up the ”vector table” starting at offset 24 .

189



6.3. MEMORY MAP CHAPTER 6. CONTROL SYSTEM

The 3-bit scheme uses IPL0 for bit 0, IPL1 for bit 1, and IPL2 for bit 2. With CPS-A
INT only connected to IPL1 , handler #2 is always called upon interrupt. Therefore,
VSync must be placed at offset 24 + 2 = 26 .

# VSYNC interrupt handler , jumps to C function.

.align 4

VSync:

jsr onVSync

rte

The last piece of the boot function sets up auto-vector mode and jump to main .

.align 4

_boot:

* Enable auto -interrupts

move.w #0x2000 , sr

* Init .BSS

jbsr clearBSS

* Init .DATA

jbsr copyDATA

* Jump to C main()

jbsr main

6.3 Memory Map

Like for the Sound System and its z80 memory space, we need to make sure the soft-
ware behaves according to the memory map defined by the board PALs.

The compiler in the GNU Compiler Collection, gcc does not have a placement keyword
at but even if it had been available, it would not have been enough to map large

portions such as the 192 KiB of GFXRAM.

We can compensate for the lack of at thanks to the power of ld ’s linker script
system. The idea is to use a two step method:

1. Define memory regions in the script thanks to the MEMORY keyword. Create seg-
ments where code/data are stored in regions based on read/write access types.

2. Connect regions and segments in the C code.

190



CHAPTER 6. CONTROL SYSTEM 6.3. MEMORY MAP

6.3.1 Goal

To avoid flipping pages, here is the memory map studied on page 50.

Start End Size Function
0x000000 0x3FFFFF 3 MiB ROM
0x800000 0x800007 8 B JAMMA Players Inputs
0x800018 0x80001F 8 B JAMMA Dip Switches
0x800030 0x800037 8 B JAMMA Coin sensors
0x800176 0x800177 1 B Kick harness
0x800100 0x80013f 64 B CPS-A registers
0x800140 0x80017f 64 B CPS-B registers
0x800180 0x800187 8 B Sound commands (latch 1)
0x800188 0x80018F 8 B Sound commands (latch 2)
0x900000 0x92FFFF 192 KiB GFXRAM
0xFF0000 0xFFFFFF 64 KiB RAM

6.3.2 Memory Regions

OUTPUT_FORMAT (" binary ")

OUTPUT_ARCH(m68k)

MEMORY {

/* Define memory regions */

rom (rx) : ORIGIN = 0x000000 , LENGTH = 0x200000

jamma_p(rw) : ORIGIN = 0x800000 , LENGTH = 0x8

jamma_d(rw) : ORIGIN = 0x800018 , LENGTH = 0x8

jamma_c(rw) : ORIGIN = 0x800030 , LENGTH = 0x8

kick_a(rw) : ORIGIN = 0x800176 , LENGTH = 0x8

cpsa_reg(rw): ORIGIN = 0x800100 , LENGTH = 0x40

cpsb_reg(rw): ORIGIN = 0x800140 , LENGTH = 0x40

latch_1(rw) : ORIGIN = 0x800180 , LENGTH = 0x8

latch_2(rw) : ORIGIN = 0x800188 , LENGTH = 0x8

gfx_ram(rw) : ORIGIN = 0x900000 , LENGTH = 0x2FFFF

ram (rw) : ORIGIN = 0xFF0000 , LENGTH = 0xFFFF

}

Trivia: Notice how powerful the linker script is compared to sdcc . A directive
OUTPUT FORMAT (" binary ") allows outputting raw binary without using a con-
tainer like elf . This avoids the conversion step from elf to binary using objcopy .

191



6.3. MEMORY MAP CHAPTER 6. CONTROL SYSTEM

SECTIONS {

.text : {

*(. text)

_etext = . ;

. = ALIGN (4);

} > rom

.data : {

_data = . ; // Start of .data marker

*(. data)

_edata = . ; // End of .data marker

. = ALIGN (4);

} > rom AT > ram // LMA = rom but VMA = ram

.rodata : {

*(. rodata)

*(. rodata .*)

. = ALIGN (4);

} > rom

.gfx_data : {

} > gfx_ram

.cpsa_reg : {

} > cpsa_reg

.cpsb_reg : {

} > cpsb_reg

.bss : {

_bss = .; // Start of .bss marker

*(. bss)

_ebss = .; // End of .bss marker

. = ALIGN (4);

} > ram

...

}

In the second part of the script, sections are assigned (via >) to a memory region using
their MEMORY name.

Trivia: Notice the care taken to make sure the 68000 will only attempt to access
aligned data via .ALIGN(4) directives. Unaligned memory access is an unrecover-
able error resulting in the 68000 HALT ing.

192



CHAPTER 6. CONTROL SYSTEM 6.4. INITIALIZING VARIABLES

6.3.3 Code to segment

C variables are placed into these sections using the names defined in the linker script.

#define ALIGN(X) __attribute__ (( aligned (X)))

#define GFXRAM __attribute__ (( section (".gfx_data")))

#define CPSA __attribute__ (( section (".cpsa_reg")))

#define CPSB __attribute__ (( section (".cpsb_reg")))

// ... All other SECTIONS here.

GFXRAM ALIGN (256) short palettes [6 * 32 * 16];

CPSA short cpsa_reg [0x20] = {};

CPSB short cpsb_reg [0x20] = {};

// ... All memory mapped data structures here.

6.4 Initializing variables

The linker script created markers and requested section .data to be written to rom

(VMA) but relocated symbols (via AT>) as if they were in ram (LMA).

With these elements, zeroing the bss and populating .data with initial values is just a
few lines of C.

// These are defined by the linker via the linker script

extern char _etext _data , _edata , _bss , _ebss;

char *src = &_etext;

char *dst = &_data;

// Copy ROM to DATA

void copyDATA () {

while (dst < &_edata) {

*dst++ = *src++;

}

}

// Zero BSS.

void clearBSS () {

for (dst = &_bss; dst < &_ebss; dst ++) {

*dst = 0;

}

}

193



6.5. VERIFYING RAM CHAPTER 6. CONTROL SYSTEM

6.5 Verifying RAM

Our bootloader is simple but the ones used by Capcom did more than bringing up the
CPUs. They also verify the health of hardware components. These screens are rarely,
if ever, seen by players since they are visible only once when the cabinet is turned on.
During normal operations, that would be when nobody is there.

All CPS-1 games display a slightly different set of text. However all of them check for
faulty RAM access by the Control system. By checking the communication lines, the
cabinet prevented wild goose bug hunts where a sub-system would fault because it
received corrupted messages.

By quickly ruling out a whole class of errors, the startup tests sped up debugging and
brought down repairing costs.

The technique used is simple. For all bytes in each area of the RAM and GFXRAM, the
m68k tries to write a value, then tries to read it back. If they differ, the memory is faulty
and an error message is displayed.

The limit of this technique is that only what is visible to the Control system can be
verified. There is no way to checksum the GFXROM. While the z80 can access most of
the Sound System ROM (except for the OKI ROM), it could perform checks but would
have no way to surface errors since the latches can only be written from the m68k side.

Ghouls ’n Ghosts boot screen
194



CHAPTER 6. CONTROL SYSTEM 6.5. VERIFYING RAM

Street Fighter 2 boot screen

Forgotten Worlds boot screen

Final Fight boot screen
195



6.6. RULING THEM ALL CHAPTER 6. CONTROL SYSTEM

6.6 Ruling them all

With each chapter peeling away a layer of complexity, we have finally reached the heart
of the CP-System. The function main is where developers will have their game engine
convert player inputs into visual and audio outputs.

The architecture is much like the z80 sound system where two ”threads” run in lock-
step. Function VSync is awakened every 16ms via an interrupt. Its job is to read inputs
and save them locally, read sound/music requests, and write them to the latch. Most
importantly, it flips the GFXRAM double buffered SCROLL and OBJ descriptors.

Trivia: The frameCounter variable paces the main thread so a new frame is only
hosted every 16ms instead of rendering as fast as possible. It is also useful to keep
track of wall-time to render animation and game logic properly.

6.6.1 Commanding sound

Requesting a sound or music playback is only about writing to a latch and forgeting
about it. However special care is necessary if the engine requests multiple sounds
during the same frame. If this were to happen the value in the latch could be overwrit-
ten before the z80 picked it up. The solution is to implement a queue system where
commands are stored and fed one by one every frame.

Functions VSync and main run in lock-step via two counters. Main only runs after a
sync has occurred. Sync is always one step ahead of main function.

volatile int vsyncCounter = 0;

volatile int frameCounter = 0;

// Called every 16ms

void VSync () {

if (frameCounter != lastFrameCounter) {

flipGFXRAMPointers (); // Flip GFX SCROLLs and OBJs.

writeSoundLatch (); // dequeue and write latch

readInputs ();

lastCounter = frameCounter;

}

vsyncCounter ++; // Unlock the main loop.

}

196



CHAPTER 6. CONTROL SYSTEM 6.6. RULING THEM ALL

6.6.2 Main

volatile int lastFrameCounter = 0;

void hostFrame () {

... // Game engine render one visual and audio frame.

}

void main() {

while(true) {

if (frameCounter < vsyncCounter) continue;

hostFrame (); // Run 16ms of gameplay

frameCounter ++;

}

}

How hostframe is implemented is completely at the programmer’s discretion. Cap-
com games used a common kernel framework made of tasks. Since there is no
source of interrupt beside vsync they implemented a collaborative multi-tasking sys-
tem where the stack and registers are stored/loaded as each task is executed.

To learn about the kernel and how it is used to run multi-task A.I bytecode and moving
fireballs, check out the Street Fighter II Paladium source code [65].

6.6.3 Retrieving inputs

Besides joystick and buttons, the engine must recover inputs such as the dip settings,
P1Start, P2Start, and most importantly detect coins being inserted.

Trivia: Arcade operators could configure the difficulty of a game via DIP switches.
In Street Fighter 2, eight configurations go from the easiest where 1 coin grants six
credits to the hardest where four coins grant a single credit. There is even a ”Free
Play” mode which no amount of begging could convince them to enable [49].

The three DIP switches are called A, B, and C. As visible on page 37 each DIP has 8
switches responsible for flipping a bit in a byte. Recovering the configuration is as
simple as reading a byte from the memory map.

Trivia: In Street Fighter 2, DIP B is used to configure the difficulty level of the game
ranging from 0 to 8 (4=default). Based on this value the A.I selects appropriate sets
of bytecode [50] script. Even in easy mode, the A.I cheats by skipping ”charging” [50].

197



6.6. RULING THEM ALL CHAPTER 6. CONTROL SYSTEM

Label Memory Area Address Mask
P1 KEY 3 JAMMA Players Inputs 0x800000 0b01000000

P1 KEY 2 JAMMA Players Inputs 0x800000 0b00100000

P1 KEY 1 JAMMA Players Inputs 0x800000 0b00010000

P UP JAMMA Players Inputs 0x800000 0b00001000

P1 DOWN JAMMA Players Inputs 0x800000 0b00000100

P1 LEFT JAMMA Players Inputs 0x800000 0b00000010

P1 RIGHT JAMMA Players Inputs 0x800000 0b00000001

P2 KEY 3 JAMMA Players Inputs 0x800001 0b01000000

P2 KEY 2 JAMMA Players Inputs 0x800001 0b00100000

P2 KEY 1 JAMMA Players Inputs 0x800001 0b00010000

P2 UP JAMMA Players Inputs 0x800001 0b00001000

P2 DOWN JAMMA Players Inputs 0x800001 0b00000100

P2 LEFT JAMMA Players Inputs 0x800001 0b00000010

P2 RIGHT JAMMA Players Inputs 0x800001 0b00000001

SERVICE JAMMA Coins 0x800018 0b01000000

P2 START JAMMA Coins 0x800018 0b00100000

P1 START JAMMA Coins 0x800018 0b00010000

COIN2 P2 JAMMA Coins 0x800018 0b00000010

COIN P1 JAMMA Coins 0x800018 0b00000001

DIP1 JAMMA DIPs 0x80001A 0bXXXXXXXX

DIP2 JAMMA DIPs 0x80001C 0bXXXXXXXX

DIP2 JAMMA DIPs 0x80001E 0bXXXXXXXX

6.6.4 Drawing on screen

Requesting tiles to be drawn consists of first describing the layout in GFXRAM, then
setting the palettes, and finally writing to the CPS-A and CPS-B registers to point them
to ”where is the data”.

Double buffering

When a frame is being drawn, neither the data in the GFXRAM nor the CPS-A/CPS-B
register values can be changed. Raster effects are not possible since HSYNC is not
forwarded to the m68k. Changes should only occur during the VBLANKing which is
signaled via the VSync function.

The proper way to avoid visual artifacts is to double buffer the SCROLL/OBJ descrip-
tors in the GFXRAM. While one buffer is used for rasterization until the next VSYNC, the

198



CHAPTER 6. CONTROL SYSTEM 6.6. RULING THEM ALL

next frame is prepared in the other buffer. On VSync the CPS-A and CPS-B registers
are written to swap the buffer roles.

CPS-A and CPS-B registers

The CPS-A registers are always at the same offset in the m68k memory map and they
always use the same layout.

Depending on the board being targeted, registers of the CPS-B will move and their in-
ternal layout will change. A convenient way to deal with this is to use MACROs and
have the build system enable the appropriate ones.

Note that all registers are 16-bit wide to accommodate the 68000 operating on them.
As shown in the summary table, a register offset is always located on an even address.

CPS-A Usage

The CPS-A is controlled via 18 registers.

Name Offset Desc
OBJ base 0x00 OBJ GFXRAM absolute address
SCROLL1 base 0x02 SCROLL1 GFXRAM absolute address
SCROLL2 base 0x04 SCROLL2 GFXRAM absolute address
SCROLL3 base 0x06 SCROLL3 GFXRAM absolute address
Rowscroll base 0x08 Rowscroll GFXRAM absolute address
Palette base 0x0A Palettes GFXRAM absolute address
Scroll 1 X 0x0C SCROLL1 Offset X
Scroll 1 Y 0x0E SCROLL1 Offset Y
Scroll 2 X 0x10 SCROLL2 Offset X
Scroll 2 Y 0x12 SCROLL2 Offset Y
Scroll 3 X 0x14 SCROLL3 Offset X
Scroll 3 Y 0x16 SCROLL3 Offset Y
Star1 X 0x18 STAR1 Offset X
Star1 Y 0x1A STAR1 Offset Y
Star2 X 0x1C STAR2 Offset X
Star2 Y 0x1E STAR2 Offset Y
Rowscroll Offsets 0x20 Offsets into Rowscroll base
Video Control 0x22 flip screen, rowscroll enable

CPS-A registers (offset origin is upper-left in screen space)

199



6.6. RULING THEM ALL CHAPTER 6. CONTROL SYSTEM

The base registers tell the CPS-A where it should expect data in GFXRAM. Registers are
16-bit but addresses must be 24-bit so values are expanded << 8 upon reception. The
linker script should be configured to make sure data structures are aligned properly.

Row Scrolling

Row scrolling allows for offsetting each visible row on SCROLL2 via a discrete X
amount. In Street Fighter II, Honda’s dohyō ( the space in which a sumo wrestling bout
occurs) perspective is achieved via linear offset differences. The more perspective
needed, the more accentuated the offset slope.

Fighters at the center of the dohyō

Fighters move to the left of the dohyō

Fighters move to the right of the dohyō

To scroll the whole screen, the CPS-A reads 256 values. That is 224 (each visible line)
+ 16 (one tile height above) + 16 (one tile height below) = 256 values to render a frame.

Each unsigned 16-bit offset value is expected in an array located in GFXRAM and
pointed to via the CPS-A register ROWSCROLL BASE .

The ROWSCROLL OFFSET instructs the CPS-A to use values not starting at ROWSCROLL BASE

but at ROWSCROLL BASE + ROWSCROLL OFFSET .

CPS-A rowscroll data access
200



CHAPTER 6. CONTROL SYSTEM 6.6. RULING THEM ALL

A convenient trick is to allocate a rowscroll array of size 1024 with one entry for the
full height of SCROLL2 to generate all the rowscroll offsets. If SCROLL2 is scrolled
vertically, the engine only needs to manipulate ROWSCROLL OFFSET and no new values
are to be generated.

GFXRAM ALIGN (256) uin16_t ROWSCROLL_BASE [1024];

// ROWSCROLL_BASE [16] = first visible line.

// ROWSCROLL_BASE [239] = last visible line.

Real-life example

When a contestant in Street Figther II jumps, SCROLL2 moves vertically but no
rowscroll offsets are re-calculated, only ROWSCROLL OFFSET is moved. This allows
to amortize the generation of perspective correct rowscroll offset.

Note that rowscroll offsets are unsigned and always indicate an amount to move
toward the left side of the screen. To offset toward the right, Street Fighter II de-
velopers took advantage of the wrap around nature of the SCROLL layers and used
decalValue = 1024 - desiredRightOffsetValue .

Video Control This register enables/disables misc attributes.

0b00000000_0000001 Enable rowscroll

0b00000000_1000000 Enable Flip Screen 90 degres cw

CPS-B Usage

The CPS-B features only seven registers but their location changes based on the ver-
sion of the chip.

Name Offset Desc
Layer control 0x26* Enable and order layers
Priority mask 0x28* 16-bit mask pen values to draw above OBJ
Priority mask 0x2A* 16-bit mask pen values to draw above OBJ
Priority mask 0x2C* 16-bit mask pen values to draw above OBJ
Priority mask 0x2E* 16-bit mask pen values to draw above OBJ
Palette control 0x30* Request palette upload

CPS-B registers (*: for Street Fighter 2, CPS-B 11)
201



6.6. RULING THEM ALL CHAPTER 6. CONTROL SYSTEM

Palette control This register is used to request upload of palette pages, each made
of 32 palettes belonging to a same layer.

0b00000000_00000001 Upload OBJ palette page

0b00000000_00000010 Upload SCR1 palette page

0b00000000_00000100 Upload SCR2 palette page

0b00000000_00001000 Upload SCR3 palette page

0b00000000_00010000 Upload STAR1 palette page

0b00000000_00100000 Upload STAR2 palette page

Palette upload does not happen immediately. Instead the CPS-A waits until the next
VBLANK and starts reading at the address provided via the PALETTE base register.

The CPS-A does not use a fixed base + offset to lookup a palette page. If SCR1 page
is not marked for upload, SCR2 page is expected immediately after OBJ palette page.

Layer control This register enables or disables a layer individually (with the exception
of OBJ which is ”disabled” by providing an empty list of tiles). It is also used to define
the priority of layers OBJ , SCROLL1 , SCROLL2 , and SCROLL3 individually.

Note that STARs are always in the back and in order STAR1, STAR2.

0b00000000_00001000 Enable SCROLL1

0b00000000_00010000 Enable SCROLL2

0b00000000_00100000 Enable SCROLL3

0b00000000_00000000 Cannot control STAR1

0b00000000_00000000 Cannot control STAR2

The board studied in this book uses a CPS-B 11 which does not support STAR1 and
STAR2. These layers were also marginally used in Forgotten Words and Strider (two
good reasons to allow the author to not face his laziness and avoid detailing the STARs
bytecode further).

The layer control register is also used to define the order in which OBJ, SCROLL1,
SCROLL2, and SCROLL3 should be drawn.

0b00000000_11000000 Layer to draw first

0b00000011_00000000 Layer to draw second

0b00001100_00000000 Layer to draw third

0b00110000_00000000 Layer to draw last

Layer IDs: OBJ=0, SCROLL1=1, SCROLL2=2, SRCOLL3 =3

202



CHAPTER 6. CONTROL SYSTEM 6.6. RULING THEM ALL

WARNING : This bit layout changes across versions of CPS-B. What is presented here
is for the CPS-B v11. Refer to Mame for documentation on other versions.

Trivia: Starfields were used so little that the bytecode mapper was removed alto-
gether from the CPS-2 API while the ASIC retained its circuits.

Priority mask These four registers control the precedence of pens belonging to the
layer behind the OBJ layer. A tile can be assigned to one priority group within a choice
of four ranging within [0-3] . A group tags pens in the tile palette to be drawn with
higher priority via a 16-bit bitfield mask. Marked pens a drawn above OBJs pens.

FEDCBA9876543210 - Priority Mask bitfield group0

FEDCBA9876543210 - Priority Mask bitfield group1

FEDCBA9876543210 - Priority Mask bitfield group2

FEDCBA9876543210 - Priority Mask bitfield group3

TIP : Tiles using priority group often use a palette where ”high priority” colors are
grouped together. This makes it easy to tag them in the bitfied because the bits are next
to each others. e.g: Mask 0xF000 marks pens 15 , 14 , 13 , and 12 as high priority.

Drawing OBJs

To draw sprites and shapes, descriptors must be written to the GFX RAM. Each entry
takes four 16-bit WORDS (8 bytes).

OBJ entry layout: xxxx yyyy nnnn aaaa

xxxx = x position (origin upper left)

yyyy = y position (origin upper left)

nnnn = tile ID

aaaa = attribute word

// OBJ attribute WORD layout

0b00000000_00011111 Palette ID

0b00000000_00100000 X Flip

0b00000000_01000000 Y Flip

0b00000000_10000000 Unused

0b00001111_00000000 X sprite size (in tiles)

0b11110000_00000000 Y sprite size (in tiles)

If the attribute WORD sets the block size to zero, a descriptor commands a single tile
to be drawn. Otherwise, the command is interpreted as a Sprite rendering command
using block size dimensions.

203



6.6. RULING THEM ALL CHAPTER 6. CONTROL SYSTEM

The CPS-A will stop reading entries from the OBJ descriptors if it reaches an empty
entry using attribute value 0xFF00 or if 256 tiles are scheduled for rendition.

WARNING : Sprite commands use only a single entry but every single tile in them count
against the 256 tiles limit. There is no way to cheat, this is an hardware limitation, not
an API limitation.

Developers do not have to worry about the STF29 or GFX partitioning. The tileID is
relative to the group it belongs to.

Drawing SCROLLs

Rendering tilemap is much alike rendering OBJs. Descriptors must be written to the
GFX RAM but the layout is much simpler. Each entry is two 16-bit WORDs wide (four
bytes).

SCROLL entry layout: xxxx aaaa

xxxx = tileID

aaaa = attributes

The attribute WORD is a bit field where we find in particular the palette ID, the group ID
which references the priority mask, and the usual X/Y flippers.

0b00000000_10000000 Unused

0b00000000_01100000 Priority group (See priority mask)

0b00000000_00010000 Y Flip

0b00000000_00001000 X Flip

0b00000000_00000111 Palette ID

All SCROLLs have different size and tile size but they are all considered Sprites (with
rectangular dimensions). They all feature 64x64 (4,096) entries.

Scroll name Tiles Dimensions Tile size Dimension
SCROLL1 64x64 8x 8 512x 512

SCROLL2 64x64 16x16 1024x1024

SCROLL3 64x64 32x32 2018x2048

SCROLLs tile size and dimensions

If a full black layer is needed, it can be rendered without using a single tile using either
SCROLL or OBJs. Enabling a STAR layer and providing zeroed bytecode does the trick.
It renders a STARfield without any stars in it if the CPS-B supports STARfield.

204



CHAPTER 6. CONTROL SYSTEM 6.7. BACK IN THE DAYS

6.7 Back in the days

The system used by Capcom to program the CP-System remained unknown for many
years. Only the nickname of Hiroaki Kondo, a composer/sound programmer often
credited as ”X68K”, alluded to a computer manufactured by Sharp.

In 2018, Akiman confirmed [57] [58] that Capcom’s SDK, named CAT-1, was launched dur-
ing the making of Street Fighter II and ran on a Sharp X68000.

6.7.1 SHARP X68000

Unheard of in the rest of the world, the X68000 is a celebrity in Japan where it was
nicknamed ”god computer”. Released in 1987, the first machine in the series was as
beautiful and powerful as it was expensive (¥369,000, roughly $3000 in 1987, equiva-
lent to $7,600 in 2022).

SHARP’s God Computer. Copyright G-Walk [69]

Despite mind-blowing hardware specifications, SHARP’s new product was a risky bet
considering it had next to no software at launch. To complicate things further, it used
its own text-based OS named Human68k.

205



6.7. BACK IN THE DAYS CHAPTER 6. CONTROL SYSTEM

The ”Manhattan” twin-tower
case of the first model became
the signature of the series.

Notice the vertical bar between
the two towers. Pushing it down
releases a spring to allow the
bar to extend past the top of the
machine and become a carrying
handle.

The ports for the keyboard,
mouse, and joystick are conve-
niently user facing. An audio
jack and a volume control are
also present.

The two 5.25” floppy drives have
elegant motorized ”soft” ejec-
tion systems.

The three LEDs in the upper
right indicates the state of
the machine. POWER is self-
explanatory, HIGH RESO indi-
cates whether the video out-
put is using 15KHz, 24KHz, or
31kHz, and TIMER indicates if a
self-powering is scheduled.

In later revisions, HIGH RESO

was replaced with HD BUSY to
indicate HDD state.

On the back panel can be found
”standard” ports such as addi-
tional Line In and Line Out ,
and an extra Joystick #2 en-
try.

Images Copyright (left and
right): G-Walk [69].

206



CHAPTER 6. CONTROL SYSTEM 6.7. BACK IN THE DAYS

The TV Control port drives
Sharp monitors and VCRs. It
can take advantage of the timer
mentioned earlier to schedule a
tape recording.

The See through Color port
is for chroma-keying and roto-
scoping.

A Image In port is for transfer-
ring images from a video device,
such as a VCR.

A serial port, RS232C , as is
found on many IBM PCs.

The HDD and FDD ports re-
spectively allow Hard-Drive and
Floppy-Drive extensions.

The 100V out outlet provides
power for a monitor.

The Analog RGB out port is
the equivalent a VGA port to
carry the monitor signal.

The Stereoscopic port drives
“shutter style” 3D glasses.

The Printer port is a variant
of the commonly called parallel
port in USA only it is called Mini-
Centronics 36-pin.

For everything else, the X68000
features two extension slots

to welcome extension cards.

Trivia: The two FG screws
are meant for Frame Grounding
since Japanese power outlets
lack Ground wire and therefore
are not grounded.

207



6.7. BACK IN THE DAYS CHAPTER 6. CONTROL SYSTEM

6.7.2 X68000 Tech specs

Inside its gorgeous ”Manhattan” case, the machine packed an unparalleled amount of
horse power. Even a machine such as the Amiga 500, released the same year and
praised in Europe and USA for its prowess, pales in comparison to the X68000.

Type X68000 Amiga 500
CPU M68000 10MHz M68000 7.16 MHz
RAM 1MiB 512 KiB
Max RAM 4 MiB 2 MiB
Colors 65,536 colors (stable) 4,096 (HAM)
Resolution 1024×1024 736x483
Sprite engine 128 units, 16x16 tiles 8 units, 16x16 tiles
VRAM 1056 KiB -
Sound Oki MSM6258 (1 channel) 4 channels PCM
Music Yamaha YM2151 (8 channels) -
Price $5,000 $1,500

X68000 vs Amiga 500

If both music and sound capabilities were outstanding, it is in the graphics department
that the X68000 made jaws hit the floor.

The 1056 KiB of VRAM are divided into three segments feeding four planes. 512 KiB
are dedicated to the Text plane, 512 KiB are for the Bitmap plane and the rest, 32 KiB,
are for the joined use of the Background plane and Sprite plane. Each plane can be
configured to use distinct resolution and layers.

6.7.3 Video prowess

The Bitmap Plane is particularly well suited to plot pixels and render images. Its direct
16bpp color mode was ideal for raytracing application (a M68881 math coprocessor
could be added to reduce reduce rendering time). Four modes are available.

• One 512x512 layer with direct 16bpp colors.

• Two 512x512 layers with shared 8bpp indexed colors.

• Four 512x512 layers with shared 4bpp indexed colors.

• One 1024x1024 layer with 4bpp indexed colors.

208



CHAPTER 6. CONTROL SYSTEM 6.7. BACK IN THE DAYS

The Text Plane is deceptively named. It is also a bitmap plane but it expects values
across four bitplanes making it well suited to write large quantities of bits in few oper-
ations. A m68k writing a 16-bit word can set 16 pixels which makes text rendering very
fast when copying characters from a model. Two modes are available.

• One 1024x1024 layer with 4bpp indexed colors.

• Four 512x512 layers with 1bpp monochrome.

The TileMap Plane offers two modes.

• Two 512x512, using 8x8 tiles with 4bpp indexed colors (16 palettes).

• One 1024x1024, using 16x16 tiles with 4bpp indexed colors (16 palettes).

The Sprite Plane is a sprite layer allowing 128 sprites on-screen (with a max of 32
sprites per scanlines). Each sprite uses 4bpp indexed color (16 palettes).

X68000 planes and layers. Copyright G-Walk [69]

In total, if all four planes are used in their most complex form, up to eleven layers can
compose the screen concurrently.

An even more impressive feat from the CRT compositor is that all layers of each plane
are independently hardware scrollable.

The numerous plane capabilities made the X68000 a versatile instrument able to excel

209



6.7. BACK IN THE DAYS CHAPTER 6. CONTROL SYSTEM

at at wide range of tasks, from simple text editing to demanding raytracing.

Video games were obviously a strength of the machine thanks to its Background and
Sprite layers although, as we will see, developers did not employ resources as one
would expect.

6.7.4 OS

Developed by Hudson Soft, the operating system named Human68k is strongly in-
spired by Microsoft’s MS-DOS .

All English name commands such as DIR , COPY and such are available. In fact, Hu-
man68k manual is nearly identical to IBM DOS 4.0J manual [67]. The system even uses
a CONFIG.SYS file to boot.

X68000 OS, Human68k

Several windows-based GUIs running on top of Human68k were released over the
years. In succession, ”VS” (a.k.a) ”Visual Shell” in 1987 and later SX-WINDOW (1989).

210



CHAPTER 6. CONTROL SYSTEM 6.7. BACK IN THE DAYS

SX-Window, GUI running on top of Human68k

6.7.5 A Development machine?

The similarities between the X68000 and the CPS-1 are many. A quick glance over the
specs on page 206 could easily lead one to conclude that a small layer of emulation is
all a X68000 needed to run CPS-1 games, making it a perfect development machine.

Since developers never detailed to what extent SHARP’s machine was involved, we can
only make an educated guess. A beginning of an answer comes from the hardware
components, while Capcom-produced game ports leave no ambiguity.

Hardware response

If the Motorola 680000 CPU and the YM2151 present in both machines are identical,
the rest diverge from slightly to significantly.

The sound chip is an OKI but it is ”only” a MSM6258. Although it works alike the
MSM6296 with ADPCM, it features only one channel which severely impacts how rich
the sound effects and music systems can be.

211



6.7. BACK IN THE DAYS CHAPTER 6. CONTROL SYSTEM

The sprite system is, at first sight, weaker than the CPS-1 since the number of tiles dis-
playable is half (128 instead of 256). But the X68000’s access to raster effect allowed
multiplexing (the Sprite Doubler by Koichi Yoshida [51]) bringing the upper limit to 512
sprites!

Lastly, the X68000 floppy storage resulted in slow loading time compared to the CPS-1
ROM. To solve this issue, developers used as much RAM as available, going as far as
loading the whole floppies during startup if the capacity of the X68000 allowed it.

The 32 KiB VRAM wall

The real issue, and perhaps the only real weakness of the ”god computer” is the minus-
cule amount of VRAM dedicated to feed the Sprite and Tilemap layers. Out of 1MiB,
only 32KiB is available which results in asset starvation (it can store only 256 16x16
tiles). This limitation knee-capped any potential of using both layers at the same time.
A VRAM shared among layers would have been a totally different story.

Software response

A definitive answer about the viability of the X68000 as a development station comes
from Capcom arcade ports.

Game Year RAM Requirements
Strider 1992 2 MiB
Final Fight 1992 2 MiB
Street Fighter 2 Champion Edition 1993 2 MiB
Super Street Fighter II 1994 4 MiB
Ghouls’n Ghosts 1994 2 MiB

X68000 Ports of CPS-1 games by Capcom

An analysis methodology shared by Upsilandre [68], leveraging XM6 Pro-68k emulator,
shows that the GFX rendering architecture of these titles exhibits no pattern of an em-
ulation layer. On the contrary, the GFX renderers are tailor made and rely heavily on
CPU tricks.

Trivia: The stress on the 68000 is confirmed by Ghouls ’n Ghosts manual which
recommends a 16MHz CPU and warns about slowdown on a 10MHz 68000.

All thes clues strongly suggest the SHARP X68000 was limited to writing/testing as-
sembly, running TCE, and allocating/compiling the GFXROM for CPS-2 games.

212



CHAPTER 6. CONTROL SYSTEM 6.7. BACK IN THE DAYS

213



6.7. BACK IN THE DAYS CHAPTER 6. CONTROL SYSTEM

6.7.6 Ports Analysis: Ghouls ’n Ghosts (1994)

Ghouls ’n Ghosts was released in 1994, six years after the arcade version. It is note-
worthy for its low RAM requirements of 2MiB RAM and its resolution of 512x512.

It is considered a ”perfect port” because of its GFX faithfulness to the CPS-1 version.
All the enemies, levels, and weapons are there, rendered with the correct rich colors.

The Tilemap plane is not used at all since the background lives in two software ren-
dered 512x512 Bitmap layers using a shared 8-bit indexed colors palette. The Text layer
is also fully software rendered in 1024x1024 16 colors despite the CPU cost of plotting
pixels in that mode. The cost and low number of colors makes it a good fit for rendering
the GUI elements.

Ghouls ’n Ghosts on SHARP x68000

Notice the vertical ”cut” in the right of Bitmap plane Pages 0 and 1. This artifact reveals
the wraparound resulting from hardware scrolling these two layers. This technique
allows the CPU to render only new portion of the background.

The Sprite layer contains more than sprites. While rendering the wind blowing in the

214



CHAPTER 6. CONTROL SYSTEM 6.7. BACK IN THE DAYS

grass only required swapping tile ID on CPS-1, the X68000 could not plot that many
pixels in the Bitmap layers. Promoting blades to sprites overlays reduced the fillrate.

The rain effect is replicated as seen on page 92 via the Text layer start offset. Note
there is no DMA to/from the VRAM so every single pixel except for the Sprite layer is
plotted by the CPU. Thanks to hardware scrolling, that cost is amortized.

512x512 Graphic Plane Page 0 512x512 Graphic Plane Page 1

Portion of 1024x1024 Text Layer 512x512 Sprite Layer

215



6.7. BACK IN THE DAYS CHAPTER 6. CONTROL SYSTEM

6.7.7 Ports Analysis: Final Fight (1992)

Final Fight was released in 1992, three years after the arcade version. Like the Ghouls’n
Ghosts port, the game managed to ship on two 5.25-inch 1.2 MiB floppies.

The graphic render uses the same trade off used by Ghouls ’n Ghosts where usage of
Tilemap plane is sacrificed in favor of the ability to feed the Sprite layer with tiles.

Two bitmap layers are used for background elements while the Text layer is used for
GUI elements. All these layers are rendered in software with a draw cost amortized
thanks to hardware scrolling.

The port of Final Fight to X68000 is close to the arcade version but is not considered
”perfect” because of missing graphic elements and color discrepancies.

Final Fight on X68000

The number of characters on screen was restricted to 7 which is less than the arcade
version where up to 13 where visible. In this case, both the 32 KiB VRAM and the 128
tiles limits were the limiting factor since no multiplexing was possible with free roam-
ing characters.

216



CHAPTER 6. CONTROL SYSTEM 6.7. BACK IN THE DAYS

The Sprite sandwich trick (page 87), where parts of the staircase appear in front of the
Sprite is done with a special blending mode were the MSBs gives precedence over the
Sprite layer. This leaves 7bpp for the color indexes and the Background ends up using
128 colors instead of 256. In other levels, this blending mode is not used so the Bitmap
layers go back to using 8bpp for a total of 256 colors available.

The YM2151 let music be close to the arcade version but without samples. The
OKI6295 is dedicated to playing sound effects on its only channel. These audio
shortcomings can be countered via support of MIDI audio playback.

512x512 Graphic Plane Page 0 512x512 Graphic Plane Page 1

Portion of 1024x1024 Text Layer 512x512 Sprite Layer
217



6.7. BACK IN THE DAYS CHAPTER 6. CONTROL SYSTEM

6.7.8 Per scene renderer

The color-depth reduction trick is only one among many others. There are many tes-
tament to the hair pulling process an X68000 port appears to be. One of them is the
introduction sequence where Damned takes away the mayor’s daughter.

The arcade version called for many sprites tiles, among them two heroes, the mini-boss
Damned, Jessica, two minions (red Dug and blue Jake), and six barrels. The number
of tiles far exceed the maximum 128 sprite tile limit of the X68000.

Final Fight X68000 intro sequence

To manage this problem, developers started by cutting out one minion (blue Jake).

Since it was still too many tiles, they resorted to enabling (for the intro only) the Tilemap
plane. Five our of the six barrels are drawn as tilemap in the Tilemap 0.

Since a tilemap is a simple grid of tiles with no concept of sprites and overlap, special
8x8 tiles were generated where columns of barrels are pre-overlapped.

218



CHAPTER 6. CONTROL SYSTEM 6.7. BACK IN THE DAYS

Things get messy when animation must occur. To allow the barrels to be broken into
pieces, the engine exploits the timing of enemies fleeing. First when Damned leaves,
then when Dug retires, rows of barrels are progressively migrated out of the tilemap
layer into the sprite layer.

Tilemap 0 Layer Sprite Layer

The whole trick is not perfect. As the barrels break down, the machine reaches its
sprite tile limit. Since the engine is not as elaborated as the arcade version (page 103),
a partial Cody is drawn.

Tilemap 0 Layer Sprite Layer
219



6.7. BACK IN THE DAYS CHAPTER 6. CONTROL SYSTEM

6.7.9 Ports Analysis: Street Fighter II Champion Edition (1993)

Street Fighter II Champion Edition was released only a year after the arcade version.

The volume of assets forced the game to ship on four 5.25-inch 1.2 MiB floppies. The
game manages to run with 2 MiB or RAM but suffers numerous loading delays when
traveling between countries. However, on a machine with 4MiB the game engine loads
all floppies to RAM to provide a loading-free experience.

In terms of GFX rendering architecture, the Tilemaps are once again ignored in favor of
the Sprite layer. The floors are software rendered. However the per-line parallax is con-
siderably sped up thanks to the combination of raster effect and hardware scrolling. On
each HSYNC event the horizontal hardware offset is adjusted which allows rendering
Page 0 once and for all.

Some Sprite elements that used to be rendered on the CPS-1 OBJ layer found their way
into the Text layer. This layer is not used for GUI but to render decorative sprites ( like
the statue in Dictator level). It is likely that the 32 KiB was once again not big enough
to contain the sprites for both opponents and decorations.

Street Fighter 2 CE on X68000

220



CHAPTER 6. CONTROL SYSTEM 6.7. BACK IN THE DAYS

The 32 KiB VRAM is updated during VBLANK to be populated with the tiles needed on
the next frame. The X68000 RAM is used as a Sprite tile Level 1 cache.

Notice the noise in the Graphic layers, the bottom part in Page 0 and the top part in
Page 1. The programmers used every avenue possible to store bytes in order to avoid
loading from the floppy drives. The parts of the pages not used for composition are
used to ”cache” background tiles. When the CPU renders, it transfers VRAM to VRAM
(sadly without DMA).

512x512 Graphic Plane Page 0 512x512 Graphic Plane Page 1

Portion of 1024x1024 Text Layer 512x512 Sprite Layer

221



6.7. BACK IN THE DAYS CHAPTER 6. CONTROL SYSTEM

Investigating further into Street Fighter 2: Champion Edition confirms the colossal task
required to convert a CPS-1 title to X68000. The were three problems to solve.

1. Find where to store assets.

2. Remain within 32 KiB VRAM per frame.

3. Remain within the m68k software rendering budget

6.7.10 Per level renderer

Like in Final Fight, where scenes were optimized on a case-per-case basis, Street
Fighter II Champion Edition uses a distinct rendering strategy depending on the arena.

When fighting occurs in China, the Text layer is not used for Sprite decoration like it is
in Thailand. Instead it is dedicated to the sky and its animation. Two rows of clouds,
accounting for two ”frames” of animation are drawn once. The hardware offsets are
leveraged to parallax the clouds and alternate their shapes. This was likely done be-
cause of the fillrate required to update this layer.

Street Fighter 2 CE on X68000
222



CHAPTER 6. CONTROL SYSTEM 6.7. BACK IN THE DAYS

6.7.11 Saving further 68000 cycles

If we look closely at Page 1 and 2, we see that the background is split. The alley is on
Page 2 while the rest is on Page 1, which is surprising since no parallax effect exists
(they are on the same plane).

This reduces overdraw when the Page 1 cyclist crosses the screen and goes over the
other cyclist in the back alley, saving a few CPU cycles.

512x512 Graphic Plane Page 0 512x512 Graphic Plane Page 1

Portion of 1024x1024 Text Layer 512x512 Sprite Layer
223



6.7. BACK IN THE DAYS CHAPTER 6. CONTROL SYSTEM

6.7.12 The Rise ...

SHARP kept on improving the series with better CPU (68030), more RAM (up to 12MiB)
and even bigger HDD (up to 80 MiB). Peripheral manufacturers embraced the computer
with extension cards covering anything users and programmers could desire.

Sharp X68000 series 1987-1993

The risky bet became a phenomenal success. Users loved the platform dearly and
publishers released, accounting for games only, no less than 823 titles between 1988
and 1999.

224



CHAPTER 6. CONTROL SYSTEM 6.7. BACK IN THE DAYS

Trivia: The success was such that a magazine dedicated to the X68000, Oh!X, was
published from 1988 to 2000 over 139 volumes.

Often featuring a raytraced cover to boast the graphic capabilities of the SHARP
marvels, each publication came loaded with software, originally on one, then two,
and later three 5.25” floppy disks [59]!

6.7.13 ... and Fall

Ultimately, SHARP updates were too timid to keep up. Even its most recent model
sporting a Motorola 68030 CPU failed to remain competitive both in terms of price
and performance.

After six years without updating the video or audio pipeline, the 2D oriented design of
the machine stated to look dated. Other machines found themselves better fitted to
embrace an era of 3D started by companies such as Silicon Graphics, 3DfX, and Verity.

In 1993, many felt a great disturbance in the Force. SHARP had discontinued the ”god
computer”.

225





People

Many people were mentioned during this book. In the early 90s, Capcom arcade di-
vision was already large with three teams working on independent titles. It can be
tedious to figure out who worked on what. Here is a summary.

Kenzo Tsujimoto, (辻本憲三): Founded Irem in 1974, a company that would go on mak-
ing many games, including the legendary R-Type and Kung-Fu Master. Forced out over
revenues following the release of IPM Invaders, he founded Capcom which he led to
worldwide success. As of 2022, he is still Capcom CEO.

Poo (Noritaka Funamizu,船水紀孝): Joined Capcom in 1985 where he was a planner
on CPS-1 titles Forgotten Worlds, U.N. Squadron , Dynasty Wars, and 1941: Counter
Attack. He is also credited with ”Special Thanks” for virtually every Capcom hit, includ-
ing Final Fight and all versions of Street Fighter II. He eventually became a General
Producer and worked on numerous Street Fighter titles. In 2004, he left Capcom to
help found Crafts & Meister.

Akiman (Akira Yasuda, 安田 朗): Joined Capcom in 1985. As a junior artist he was
in charge of background on Hyper Dyne Side Arms. After reportedly asking for a pro-
motion in a washroom encounter, he became a planner (focusing on artwork) for For-
gotten Worlds, Final Fight, and Street Fighter II. He dedicated himself to artwork for
several Capcom titles well after the days of CPS-1. He left Capcom in 2003 and be-
came a freelance artist.

Nin (Akira Nishitani, 西谷 亮): Joined Capcom in 1985. His nickname, ”NiN”, is well
known since it is associated with high-scores in all the games he planned. Among
many other titles, he was a planner (focusing on gameplay) on Forgotten Worlds, Final,
and Street Fighter II. He left Capcom in 1995 to found Arika and produced the Street
Fighter EX series for his former company.

227



CHAPTER 7. PEOPLE

Professor F / Arthur King (Tokuro Fujiwara,藤原得郎一): Joined Capcom in 1983 and
planned Commando, Ghosts ’n Goblins, and Bionic Commando. He became General
Manager in 1988. After working at Capcom for 13 years, he left in 1996 to start his own
studio, Whoopee Camp.

Kouichi Yotsui (四井浩一): Joined Capcom in 1986 and planned the impressive first
CPS-1 title, Strider. He left in 1990 and went on to work at Takeru and later Mitchell
Corporation. Nowadays, he works as a freelancer.

Yoshiki Okamoto (岡本吉起): Joined Capcom in 1984 after leaving Konami. We was a
planner on early titles such as Side Arms and Willow before he moved to overseeing all
arcade development at Capcom, becoming a producer. He is credited with recruiting
Akiman which had a profound impact on the arcade division. He left Capcom to start
his own video game development company, Flagship. In later years, he created several
successful mobile games such as Dragon Hunter and Monster Strike.

Takashi Nishiyama (西山隆志): Joined Capcom in 1986 coming from Irem where he
designed Kung-Fu Master. He was a planner on pre-CPS-1 games, in particular Street
Fighter 1 for which he created the special move ”Hadouken”. He joined SNK in 1990
where he worked on Fatal Fury before becoming a producer on several iterations of
King of Fighters and Metal Slug.

Yoko Shimomura (下村陽子): Joined Capcom in 1988, straight after graduating from
Osaka College of Music. She contributed to the soundtrack of over sixteen games
starting on console titles before moving to arcades. She is noteworthy for writing the
musics of Street Fighter II and Final Fight. She left Capcom in 1993 to work for Square
where she is still employed as of 2022.

Yoshihiro Sakaguchi (坂口 由洋): Joined Capcom in 1984. He composed music for
both home consoles with titles such as Mega Man and Mega Man 2 and also arcades
where he worked on Street Fighter 1 and Final Fight. He left Capcom in the mid 90’s.

228



Epilogue

The CPS-1 study was a passion project that took over a year to complete in my spare
time. The goal was to obsessively explore the hardware, understand it down to the
metal, and learn how to program it. As it is often the case, the journey took an unex-
pected turn and I came out of the adventure with more than I initially anticipated.

In the beginning, discovering the internals of Capcom’s machine was fascinating and
borderline addictive. I often found myself in the wee-hours exploring schematics or ex-
perimenting with code. The technology that unraveled confirmed the key part it played
in shaping Capcom’s destiny.

It is when I starting studying the systems competing against the CP-System that my
opinion started to evolve.

Capcom’s arch-nemesis, SNK, had built an impressive machine which surpassed the
CP-System. Games were built relying exclusively on sprites without using limiting
tilemaps. While the CPS-1 could display 256 sprites, the Neo-Geo could achieve 381.
Each of the Neo-Geo sprites could be scaled via a shrinking technique extensively used
in successful titles such as Super Sidekicks.

The list of features goes on. Auto-animation allowed to defining and forgeting an an-
imation, a feature used profusely in Metal Slug for the gorgeous result that made it
famous. HSYNC detection unlocked raster effects. The 330 megabits capacity of its
boards was proudly advertised.

Yet, despite hardware’s shortcomings, Capcom games were able to hold their own. In
several occurrences some even managed to achieve much greater success than titles
running on the Neo-Geo. It was as if, past a certain point, technology did not matter
that much.

229



CHAPTER 8. EPILOGUE

As this book was coming to an end, I found myself admiring more and more the work
of the people who breed life into the silicon. Yes, they had a good platform to work
with but it was not a silver bullet either. These creatives slept under their desk. They
courageously tracked allocations with paper and scissors, they entered pixel colors by
hand, tile by tile, using a keyboard. They worked long nights and passed ROM chips
using string though the windows in order to meet deadlines.

This venture started with the goal of giving readers a greater appreciation for the hard-
ware. It ends with an author having opened his eyes to the artists and designers who
put a soul in the machine.

- Fabien Sanglard

230



Appendix

9.1 Making of

This book was written for the most part on a Lenovo X1 Carbon Gen 9 running Ubuntu
22.04. It was a deeply enjoyable experience to work with such a reliable and blazing
fast machine.

A few excursions into Windows 10 territory happened to use Adobe Photoshop when
Gimp skills showed their limits.

Source code was synchronized via the awesome Github. LATEX was authored with Sub-

231



9.1. MAKING OF CHAPTER 9. APPENDIX

lime Text 4. Drawings were done with Inkscape. Game screenshots captured with
Mame. Compilation was performed by pdflatex.

The build system is a custom Golang program able to operate with a single build.go

command. It takes 1m53s to generate the whole PDF in release mode (300dpi). An
incremental debug mode (100dpi) completes within 10s.

The PDF viewer changed between platforms. On Linux, evince was used while
SumatraPDF.exe was chosen on Windows. Both viewers were not only amazingly
fast, they also supported auto-reload which was a lifesafer. These projects received
handsome donations for their service.

To remain motivated to ship, a copious amount of moral support was provided by Rudy
the cat and my amazing wife Victoria.

232



Index

ADPCM
Compression, 161
Decompression, 58

Back in the days
General, 129
GFX, 136
Programming, 199
SFX/Musics, 172

Board
Board A, 36
Board B, 39
Board C, 41

Channels
Practice, 134

Colors
Ink, 43
Palette page, 84
Pen, 43
Space, 74

Computers
NEC PC-98, 175
SHARP X68000, 199
SONY SMC-70, 145

CP-System
CPS-1, 31
CPS-1.5 Kabuki, 121
CPS-2, 122

Games
All from 1988 to 1995, 27

Commando, 16
Final Fight, 25
Ghost’n Goblins, 18
R-Type, 74
Street Fighter 2, 27

Interrupts
68000, 46, 128
Programming 68000, 183
Programming z80, 168
z80, 52, 128

PCB, 22
Printed Circuit Boards, 22

Processors
CPS-A, 80
CPS-B, 80
Motorola 68000, 45
OKI MSM6295, 57
Yamaha 2151, 54
Yamaha 3012, 56
Zilog 80, 52

Sprites Multiplexing
Amiga, 95
C64, 95
X68000, 206

Systems
Audio, 51
Control, 45
Graphics, 79
Video, 61

233





Notes & References

[1] What is a Medal game? This is not a typo! A medal game is played with metal
coins. The most famous ones are ”pusher games” where the player must drops
coins in a platform system. Each platform moves back and forth as automated
brooms. The goal is to push coins groups past the edge of the final platform
where they are rewarded to the player.

[2] What is a Planner? They were the top decision maker in a Japanese game dev
team. Responsible for giving directions and making game design decisions, all
other members of the team reported to them. There was usually a single Planner
in charge (like Poo on 1943: The Battle of Midway) but there could be two like
in Street Fighter II where both Akira Nishitani (Nin) and Akira Yasuda (Akiman)
were in charge.

[3] ”1942 Final Review Team Arcade” (by Tyler Huberty, Greg Nazario, Isaac Simha,
link, 2012-09-12.

[4] ”Computer Gamer Magazine #4” (”Coin-Op Connection” article, link, 1985-07.

[5] ”Questionable figures”, The figures of ”two years and five millions dollars” should
be taken carefully. These numbers were found on a Forgotten Worlds flyer (24)
which also mentioned three Motorola 68000 whereas the final product only in-
cluded a single one. 1989.

[6] ”The story of the 3dfx” (by Fabien Sanglard), link, 2019-04-04.

[7] ”The Sound of Innovation: Stanford and the Computer Music Revolution” (by
Andrew J. Nelson ), ISBN: 978-0262028769. 2015-03-06

[8] ”The birth of Chun-Li” (Akiman for Archipel), link, 2018-02.

[9] ”Computer Speed Claims 1980 to 1996” (Roy Longbottom), link.

[10] ”Les grands noms du jeu video, Yoshihisa Kishimoto - Enter the Double Dragon”
(Florent Gorges for Editions PixNlove), link, 2012-07-05.

235

https://course.ece.cmu.edu/~ece545/F16/reports/F12_Arcade1942.pdf
https://www.youtube.com/watch?v=RxIXilYv0kM
https://fabiensanglard.net/3dfx_sst1/index.html
https://www.youtube.com/watch?v=RxIXilYv0kM
http://www.roylongbottom.org.uk/mips.htm
https://www.editionspixnlove.com/les-grands-noms-du-jeu-video/289-yoshihisa-kishimoto-enter-the-double-dragon.html


NOTES & REFERENCES NOTES & REFERENCES

[11] ”Akiman’s Twitter” (akiman), post1, post2. post3.

[12] ”Top 10 Highest-Grossing Arcade Games of All Time” (Jaz Rignall for us-
gamer.net) (200,00 units: SF2 WW sold 60,000 while SF2 CE sold 140,000), link,
2016-01-01.

[13] ”World of Warcraft Leads Industry With Nearly $10 Billion In Revenue” (Jonathan
Leack for gamerevolution.com), link, 2014-26-01.

[14] ”Interview with Noritaka Funamitsu” (Retro magazine), link p1, link p2, link p3, .

[15] ”Mame CPS-1 video driver” (mame source code), link, 2008-04-11.

[16] ”Mame CPS-1 driver” (mame source code), link, 2008-04-11.

[17] ”Kabuki z80 encryption” (mame source code), link, 2008-04-11.

[18] ”Early CAPCOM Arcade Games FGPA” (Jose Tejada), link, 2020-08-05.

[19] ”Genesis mode H40” The vertical and horizontal rates in H40 are not the num-
bers we would get if we were to inject the dot-clock, number of dots, and number
of lines in the formulas. This is because the Genesis designers wanted to have
the same rate in H32 and H40 modes (59.92 Hz). The dot-clock slows down to
5.37MHz for 28 dots during HBLANK, resulting in 59.92 Hz VSYNC and 15,700
KHz HSYNC (Conversation with Upsilandre).

[20] ”Dot clock rates” (pineight.com), link.

[21] ”Final Fight Developer’s Interview” (capcom.com), link, 2019-02-08.

[22] ”Street Fighter II Developer’s Interview” (capcom.com), link, 2018-11-21.

[23] ”Capcom Activity Report: Akira Yasuda part 1” (capcom.com), link, 2016-03-31.

[24] ”Capcom Activity Report: Akira Yasuda part 2” (capcom.com), link, 2016-04-04.

[25] ”Capcom, A captive audience” (Robin Hogg & Dominic Handy for The Games
Machine, Issue #19), link, 1989-06-01.

[26] ”Yoshiki Okamoto interview” (Gamest Magazine #38), link, 1989-10-01.

[27] ”Final Fight arcade 2 players” (arronmunroe), link (Use ’,’ and ’.’ to move frame by
frame) 2013-10-12.

[28] ”DL-0921 (CPS-B-21) Video Signals Generation” (Loı̈c Petit), link, 2020-11-29.

[29] ”DL-0921 (CPS-B-21) Security Scheme” (Loı̈c Petit), link.

[30] ”Capcom CPS1” (Eduardo Cruz), part1, part2, part3, 2015-04-16.

236

https://twitter.com/akiman7/status/465507673572519936
https://twitter.com/akiman7/status/309615270815731712
https://twitter.com/akiman7/status/386598518380453888
https://www.usgamer.net/articles/top-10-biggest-grossing-arcade-games-of-all-time
https://www.gamerevolution.com/features/13510-world-of-warcraft-leads-industry-with-nearly-10-billion-in-revenue#/slide/1
http://fightingstreet.com/folders/variousinfofolder/interviewfolder/sfii_funamitsu/funamitsu1.jpg
http://fightingstreet.com/folders/variousinfofolder/interviewfolder/sfii_funamitsu/funamitsu2.jpg
http://fightingstreet.com/folders/variousinfofolder/interviewfolder/sfii_funamitsu/funamitsu3.jpg
https://github.com/mamedev/mame/blob/e070405df99e6a5997d5a64ecd62e7161c729a9d/src/mame/video/cps1.cpp#L269
https://github.com/mamedev/mame/blob/e070405df99e6a5997d5a64ecd62e7161c729a9d/src/mame/drivers/cps1.cpp#L567
https://github.com/mamedev/historic-mame/blob/master/src/mame/machine/kabuki.c
https://github.com/jotego/jt_gng/blob/fb92e5ac0f72323638974034ad652649b6efafcb/README.md
https://pineight.com/mw/page/Dot_clock_rates.xhtml
https://game.capcom.com/cfn/sfv/column/132673?lang=en
https://game.capcom.com/cfn/sfv/column/132595?lang=en
https://game.capcom.com/cfn/sfv/column/112429
https://game.capcom.com/cfn/sfv/column/112432
https://archive.org/details/the-games-machine-19/page/n23/mode/2up
https://retrocdn.net/images/9/91/Gamest_JP_038.pdf
https://youtu.be/HyAHGHo22Og?t=1707
https://gitlab.com/loic.petit/cps2-reverse/-/blob/master/DLs/DL-0921/doc/video-signals.md
https://gitlab.com/loic.petit/cps2-reverse/-/blob/master/DLs/DL-0921/doc/security-scheme.md
http://arcadehacker.blogspot.com/2015/04/capcom-cps1-part-1.html
http://arcadehacker.blogspot.com/2015/05/capcom-cps1-part-2.html
http://arcadehacker.blogspot.com/2015/06/capcom-cps1-part-3.html


NOTES & REFERENCES NOTES & REFERENCES

[31] ”Capcom Kabuki CPU” (Eduardo Cruz), intro, part1, part2, part3, part4, part5,
2014-11-16.

[32] ”CAPCOM CPS1 Reverse Engineering” (Eduardo Cruz), link, 2015-06-15.

[33] ”CPS1 Project Update” (Eduardo Cruz), link, 2015-09-19.

[34] ”Chip Hall of Fame: Motorola MC68000 Microprocessor” (spectrum.ieee.org),
link, 2017-06-30.

[35] ”Instruction prefetch on the Motorola 68000 processor” (Jorge Cwik), link, 2005.

[36] ”CPS-2 Rebirth !!!!” (cps2shock.retrogames.com), link, 2003-04-23.

[37] ”Street fighter 2 WW glitch invisible dhalsim” (youtube.com Error1), link, 2010-
09-22.

[38] ”Blending Worlds With Music: Interview With Composer Yoko Shimomura”
(otaquest.com), link, 2019-12-26.

[39] ”Programmer’s Guide to Yamaha YMF 262/OPL3 FM Music Synthesizer”
(Vladimir Arnost), link, 2019-12-26.

[40] ”CPS-B Number” (tim for arcadecollection.com), link.

[41] ”The Untold History of Japanese Game Developers Volume 1 (Interview: Koichi
Yotsui)” (John Szczepaniak), 2015-11-04.

[42] ”Game Maestro #4”, link.

[43] ”Street Fighter 2: Oral History” (Matt Leone), link. 2014-02-03.

[44] ”Blending Worlds With Music: Interview With Composer Yoko Shimomura”
(OTAQUEST Editor), link. 2019-12-26.

[45] ”BEEP! Megadrive magazine: The Women of Game Making” (translated shmu-
plations.com), link. 1990-10.

[46] ”Unfinished Strider Conversion” (Shoestring), link. 2016-02-17.

[47] ”How to Phoenix a CPS 2 PCB” (Joe Bagadonuts), link. 2015-05-18.

[48] ”Dialogic ADPCM Algorithm” (Dialogic Corporation), link. 1988.

[49] ”Street Fighter 2 Manual” (Capcom Corporation), link. 1992.

[50] ”Street Fighter 2: The A.I engine” (Ben Torkington), link. 2017-1-20

[51] ”X68000 Sprite management” (Koichi Yoshida), link. 2021-02-25

237

 http://arcadehacker.blogspot.com/2014/11/capcom-kabuki-cpu-intro.html
http://arcadehacker.blogspot.com/2014/11/capcom-kabuki-cpu-part-1.html
http://arcadehacker.blogspot.com/2014/11/capcom-kabuki-cpu-part-2.html
http://arcadehacker.blogspot.com/2014/11/capcom-kabuki-cpu-part-3.html
http://arcadehacker.blogspot.com/2014/11/capcom-kabuki-cpu-part-4.html
http://arcadehacker.blogspot.com/2014/11/capcom-kabuki-cpu-part-5.html
https://www.youtube.com/watch?v=IBZc__9sM28
http://arcadehacker.blogspot.com/2015/09/project-update.html
https://spectrum.ieee.org/tech-history/silicon-revolution/chip-hall-of-fame-motorola-mc68000-microprocessor
http://pasti.fxatari.com/68kdocs/68kPrefetch.html
https://web.archive.org/web/20060812042251/http://cps2shock.retrogames.com/wip.html
https://www.youtube.com/watch?v=qEFPzcOK_uQ
https://www.otaquest.com/yoko-shimomura-interview/
https://www.fit.vutbr.cz/~arnost/opl/opl3.html
http://www.arcadecollecting.com/info/cps-b_numbers.html
http://shmuplations.com/akiman/
https://www.polygon.com/a/street-fighter-2-oral-history/
https://www.otaquest.com/yoko-shimomura-interview/
https://shmuplations.com/womenofgamedesign/
https://www.jammarcade.net/strider-conversion/
https://www.youtube.com/watch?v=HFj8Mkw_kog
https://multimedia.cx/mirror/dialogic-adpcm.pdf
https://www.gamesdatabase.org/Media/SYSTEM/Arcade/Manual/formated/Street_Fighter_II--_Champion_Edition_-_1992_-_Capcom.pdf
https://sf2platinum.wordpress.com/2017/01/20/the-ai-engine
https://yosshin4004-github-io.translate.goog/x68k/xsp/index.html?_x_tr_sl=ja&_x_tr_tl=en&_x_tr_hl=en-US


NOTES & REFERENCES NOTES & REFERENCES

[52] ”How To Make Capcom Fighting Characters” (Akiman, Kiki, Bengus), ISBN: 978-
1772941364. 2020-010-20

[53] ”Akiman, 2003 Interview from Capcom Design Works” (Akiman, translated
shmuplations), link. 2003

[54] ”A Talk Between the Creators of Street Fighter and Fatal Fury: KOF” (Yoshiki
Okamoto and Takashi Nishiyama), link. 2021-08-09

[55] ”Street Fighter II Complete File” (Capcom edition), ISBN: 978-4257090014. 1992-
11-15

[56] ”Shoryuken..! The music of Street Fighter II” (909originals), link 2021-21-02

[57] ”The CPS-1 SDK, a.k.a CAT-A” (Akiman), link 2018-07-01

[58] ”The CPS-1 SDK, a.k.a CAT-A: Additional details” (Takenori Kimoto (a.k.a
KimoKimo)), link 2018-07-02

[59] ”Private View: 月刊電脳倶楽部 (GEKKAN DENNŌ CLUB)” (Ted Danson), link
2015-06-25

[60] ”MSM6295 datasheet (by OKI), link

[61] ”Sony SMC-70 Microcomputer” (by Ahm), link 2011-05-19

[62] ”Capcom – Retrospective Interview” (by https://shmuplations.com/), link 1991

[63] ”Street Fighter II Interview Soundtrack OST” (Yoko Shimomura), link 2017-10-28

[64] ”Diggin’ In The Carts, Hidden Levels” (conversation Yoko Shimomura with Man-
ami Matsumae), link 2014-09-23

[65] ”Street Fighter II Platinium Source Code” (Ben Torkington), link 2021-10-10

[66] ”Japan’s Technical Standards: Implications for Global Trade and Competitive-
ness” (John Mcintyre), ISBN: 978-1567200539. 1997-02-28

[67] ”Human68k Manual” (gamesx.com), link 2019-08-27

[68] ”Le x68000 et la supériorité japonaise” (upsilandre), link 2020-12-04

[69] ”X68000 Perfect Catalogue” (by G-Walk), ISBN: ISBN4867171018. 2020-10-27

238

http://shmuplations.com/akirayasuda/
https://www.youtube.com/watch?v=uqRFod7nuHo&t
https://909originals.com/2021/02/21/shoryuken-the-music-of-street-fighter-ii-how-yoko-shimomura-soundtracked-one-of-the-biggest-video-games-of-all-time/
https://twitter.com/akiman7/status/1013648367837048833
https://twitter.com/KIMOKIMO_Club/status/1013817480496627712
http://thecoter.ie/2015/06/25/gekkan-denno-club/
https://fabiensanglard.net/sf2_sound_system/MSM6295.pdf
http://users.glitchwrks.com/~ahm/smc70/
https://shmuplations.com/capcom1991/
https://www.youtube.com/watch?v=HOxN8Dzv2sw
https://www.youtube.com/watch?v=Y__usQbGA5M
https://github.com/bentorkington/sf2ww
https://gamesx.com/wiki/doku.php?id=x68000:human68k_manual
https://www.gamopat-forum.com/t38282p210-le-x68000-et-la-superiorite-japonaise#3336620



	Introduction
	Costly Production
	Plagued by piracy
	Capcom NT (New Technology)
	Ode to CP-System

	Hardware
	Goals
	JAMMA
	Physical Architecture
	Board A
	Board B
	Board C
	PALs

	Logical Architecture
	Control system
	Motorola 68000 CPU
	Motorola 68000 "work" RAM
	Motorola 68000 Program ROM
	68000 Memory Map
	Putting it all together

	Audio system
	z80 CPU
	z80 Work RAM
	z80 ROM
	z80 Memory Map
	YM2151
	YM3012
	MSM6295
	PCM 101
	ADPCM compression

	Video system
	CRT 101
	Syncing
	Fields
	Making choices
	Color Space
	Putting it all together
	Color generator

	Graphic system
	CPS-A and CPS-B: The ASICs powerhouse
	Pens and Inks
	Elements of drawing
	Drawing background
	CPS1 Tilemaps
	Drawing Sprites
	OBJ Limitations
	Putting it all together

	Copy protection system
	The ever changing CPS-B
	ID check
	Multiplication check
	Moving registers
	Unexpected behavior detection
	Invalid offset detection
	Configuration Key

	Epilogue
	CPS-1.5 Kabuki
	CPS-2


	Software concepts
	CCPS: The CPS-1 Build System
	Programming Language
	CPUs Bootstrapping
	Systems communication
	m68k UTF8min→ CPSA and m68k UTF8min→ CPS-B
	z80 UTF8min→ YM2151
	z80 UTF8min→ MSM6295
	m68k UTF8min→ z80
	Interrupts
	Back in the days
	Our sound driver

	Tracking wall-time
	Randomness
	Banking system

	GFX System
	Tile format
	GFX Layout
	Channels
	Back in the days
	Pen and Papers
	Non-square grid paper
	OBJ allocation
	The sheet system
	Digitizing art
	Tiny Character Editor
	Dotting
	Saving tiles
	Team structure and Culture
	Inspiration

	Shapes and Sprites
	Sprite
	Shape


	Sound System
	Processing Sound Samples
	Constraint
	ADPCM Compression

	Structure of the OKI ROM
	Processing Music
	Programming the z80
	Bootstrapping
	z80 interrupt
	Initializing variables
	z80 Sound Driver

	Back in the days
	Recruiting
	Creative process
	Tools


	Control System
	Bootstrapping the 68000
	Auto-Interrupt
	Memory Map
	Goal
	Memory Regions
	Code to segment

	Initializing variables
	Verifying RAM
	Ruling them all
	Commanding sound
	Main
	Retrieving inputs
	Drawing on screen

	Back in the days
	SHARP X68000
	X68000 Tech specs
	Video prowess
	OS
	A Development machine?
	Ports Analysis: Ghouls 'n Ghosts (1994)
	Ports Analysis: Final Fight (1992)
	Per scene renderer
	Ports Analysis: Street Fighter II Champion Edition (1993)
	Per level renderer
	Saving further 68000 cycles
	The Rise ...
	... and Fall


	People
	Epilogue
	Appendix
	Making of

	Notes & References

